Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein abundant in human tumors confers resistance to anticancer drugs

24.02.2004


Scientists report that a protein made in excess in the majority of human tumors plays a significant role in the ability of cancer cells to resist traditional treatments. The research study, published in the February issue of Cancer Cell, provides new insight into the biology of cancer cells and may have a significant impact in the design of future, more effective cancer treatments.



Tumor formation results when cells divide in an unregulated fashion and many chemotherapeutic agents are thought to work by inducing apoptosis, a complex process of cell death, to halt proliferation of malignant cells. It is known that most cancer cells do not undergo apoptosis under many stress conditions that would trigger apoptosis in healthy cells, including chemotherapeutic treatments. However, the details of the biology underlying drug action and why some cancers are drug resistant are not well understood. A research team led by Dr. Donald Kufe from the Dana-Farber Cancer Institute in Boston, Massachusetts examined the role of a protein called MUC1 in drug resistance in cancer cells. The level of MUC1 is substantially elevated in most human tumors. Normal levels of MUC1 are thought to play a role in cell repair after damage, inhibiting cell death and promoting generation of new cells. The researchers found that high levels of MUC1 protein, as is found in cancer, reduces traditional apoptosis signals, blocks the apoptotic response to toxic anticancer agents and confers resistance to treatment in animal tumor models. Further, reduction of MUC1 in lung and breast cancer cells is associated with increased sensitivity of these cells to anticancer drugs.

The researchers conclude that abnormal overabundance of MUC1 in human tumors promotes cancer cell survival, even in the presence of agents that normally induce cancer cell death. "We believe that our findings will lead to a better fundamental understanding of cancer biology and treatment. We have uncovered a mechanism in which what appears to be a normal physiological mechanism to protect healthy cells against apoptosis during stress-induced repair could be exploited by human tumors to survive under adverse conditions. In addition, because MUC1 reduces the normal apoptotic response to DNA damaging agents, it is an attractive target for design of future cancer therapeutics," explains Dr. Kufe.



Jian Ren, Naoki Agata, Dongshu Chen, Yongqing Li, Wei-hsuan Yu, Lei Huang, Deepak Raina, Wen Chen, Surender Kharbanda, and Donald Kufe: "Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents"

Published in Cancer Cell, February 2004, Volume 5, Number 2, pages 163-176.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>