Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein abundant in human tumors confers resistance to anticancer drugs

24.02.2004


Scientists report that a protein made in excess in the majority of human tumors plays a significant role in the ability of cancer cells to resist traditional treatments. The research study, published in the February issue of Cancer Cell, provides new insight into the biology of cancer cells and may have a significant impact in the design of future, more effective cancer treatments.



Tumor formation results when cells divide in an unregulated fashion and many chemotherapeutic agents are thought to work by inducing apoptosis, a complex process of cell death, to halt proliferation of malignant cells. It is known that most cancer cells do not undergo apoptosis under many stress conditions that would trigger apoptosis in healthy cells, including chemotherapeutic treatments. However, the details of the biology underlying drug action and why some cancers are drug resistant are not well understood. A research team led by Dr. Donald Kufe from the Dana-Farber Cancer Institute in Boston, Massachusetts examined the role of a protein called MUC1 in drug resistance in cancer cells. The level of MUC1 is substantially elevated in most human tumors. Normal levels of MUC1 are thought to play a role in cell repair after damage, inhibiting cell death and promoting generation of new cells. The researchers found that high levels of MUC1 protein, as is found in cancer, reduces traditional apoptosis signals, blocks the apoptotic response to toxic anticancer agents and confers resistance to treatment in animal tumor models. Further, reduction of MUC1 in lung and breast cancer cells is associated with increased sensitivity of these cells to anticancer drugs.

The researchers conclude that abnormal overabundance of MUC1 in human tumors promotes cancer cell survival, even in the presence of agents that normally induce cancer cell death. "We believe that our findings will lead to a better fundamental understanding of cancer biology and treatment. We have uncovered a mechanism in which what appears to be a normal physiological mechanism to protect healthy cells against apoptosis during stress-induced repair could be exploited by human tumors to survive under adverse conditions. In addition, because MUC1 reduces the normal apoptotic response to DNA damaging agents, it is an attractive target for design of future cancer therapeutics," explains Dr. Kufe.



Jian Ren, Naoki Agata, Dongshu Chen, Yongqing Li, Wei-hsuan Yu, Lei Huang, Deepak Raina, Wen Chen, Surender Kharbanda, and Donald Kufe: "Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents"

Published in Cancer Cell, February 2004, Volume 5, Number 2, pages 163-176.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>