Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discover important clue to new treatments for lymphoma, breast and colon cancers

24.02.2004


Mayo Clinic researchers discover that key cancer gene cbp doesn’t work alone; Important clue to targeting new treatments for lymphoma, breast and colon cancers



Mayo Clinic cancer researchers have discovered a key partnership between two genes in mice that prevents the development of cancer of the lymph nodes, known as T-cell leukemia or lymphoma.

This first-time finding provides researchers with a promising target for designing new anti-cancer drugs that fight lymphomas, as well as other cancers in which this partnership exists, including breast and colon cancers.


The Mayo Clinic research report appears as the cover story in today’s edition of the journal, Cancer Cell, (http://www.cancercell.org). Jan van Deursen, Ph.D., a specialist in pediatric cancers with the Department of Pediatrics and a member of the Mayo Clinic Cancer Center, led the research team.

According to Dr. van Deursen, the Mayo Clinic cancer research team used specially-bred laboratory mice to demonstrate three things not previously known about the development of these types of cancer. They are the first to:
  • Provide laboratory evidence that the gene CBP is a tumor suppressor -- and that the lack of CBP contributes to the formation of lymphoma.

  • Demonstrate that the absence of CBP works in partnership with low levels of a protein called p27Kip1. When these two conditions are present, lymphoma development accelerates in mice.

  • Discover that two compounds -- Cyclin E and Skp2 -- control p27Kip1 levels.

"We not only found the tumor suppressor, we also showed what other gene defects need to occur in the same cell for cancer to progress," says Dr. van Deursen. "Cancer is not the result of a single defect, but is related to a combination of defects and events," he explains. "To find the best treatment, it’s vital to discover what combinations of changes have occurred with the cell to transform it from a normal cell into a cancer cell."

Lymphoma belongs to the hematologic malignancies group of cancers because it involves blood, bone marrow and lymph nodes. In general, it is one of the more common cancers and it is increasing in the United States. Each year about 50,000 Americans are diagnosed with some form of lymphoma, and another 30,000 die from the cancer.

Background Analogy: Cancer as a River and the Search for its Headwaters

Cancer researchers liken cancer to a river with directional flow. Like a river, cancer flows downstream toward production of disease. What researchers want to find is the upstream headwaters -- the point of origin that eventually leads to cancer.

They look for the earliest "upstream" cellular irregularities that contribute to dangerous "downstream" conditions. In this study, Mayo Clinic researchers discovered a previously unknown early, upstream event in the cancer process -- that the compounds Cyclin E and Skp2 are upstream elements that control the downstream level of p27Kip1. They found that when p27Kip1 levels are low, and when combined with the absence of CBP, conditions favor cancer.

"Low levels of p27Kip1 are often associated with human cancers and with very poor prognosis," says Dr. van Deursen. "We have shown in our research the mechanism by which p27Kip1 gets altered. Now that we know this mechanism, we can design treatments to keep levels of p27Kip1 from going down."

Dr. van Deursen notes that altered levels of p27Kip1 are not the result of a defective gene. Rather, the altered levels are the indirect result of high levels of the upstream molecules, Cyclin E and Skp2.

"If we can prevent these indirect upstream effects from happening, then the undesirable downstream events will not occur," he says.

From this finding, the Mayo Clinic cancer researchers conclude that a cooperative relationship exists between the loss of CBP and depressed levels of p27Kip1 to produce cancer.


A grant to Mayo Clinic from the Department of Defense funded this research study. Researchers from St. Jude Children’s Research Hospital in Memphis, Tenn., also contributed to the investigation.

Mary Lawson | EurekAlert!
Further information:
http://www.cancercell.org
http://www.mayo.edu/
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>