Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discover important clue to new treatments for lymphoma, breast and colon cancers

24.02.2004


Mayo Clinic researchers discover that key cancer gene cbp doesn’t work alone; Important clue to targeting new treatments for lymphoma, breast and colon cancers



Mayo Clinic cancer researchers have discovered a key partnership between two genes in mice that prevents the development of cancer of the lymph nodes, known as T-cell leukemia or lymphoma.

This first-time finding provides researchers with a promising target for designing new anti-cancer drugs that fight lymphomas, as well as other cancers in which this partnership exists, including breast and colon cancers.


The Mayo Clinic research report appears as the cover story in today’s edition of the journal, Cancer Cell, (http://www.cancercell.org). Jan van Deursen, Ph.D., a specialist in pediatric cancers with the Department of Pediatrics and a member of the Mayo Clinic Cancer Center, led the research team.

According to Dr. van Deursen, the Mayo Clinic cancer research team used specially-bred laboratory mice to demonstrate three things not previously known about the development of these types of cancer. They are the first to:
  • Provide laboratory evidence that the gene CBP is a tumor suppressor -- and that the lack of CBP contributes to the formation of lymphoma.

  • Demonstrate that the absence of CBP works in partnership with low levels of a protein called p27Kip1. When these two conditions are present, lymphoma development accelerates in mice.

  • Discover that two compounds -- Cyclin E and Skp2 -- control p27Kip1 levels.

"We not only found the tumor suppressor, we also showed what other gene defects need to occur in the same cell for cancer to progress," says Dr. van Deursen. "Cancer is not the result of a single defect, but is related to a combination of defects and events," he explains. "To find the best treatment, it’s vital to discover what combinations of changes have occurred with the cell to transform it from a normal cell into a cancer cell."

Lymphoma belongs to the hematologic malignancies group of cancers because it involves blood, bone marrow and lymph nodes. In general, it is one of the more common cancers and it is increasing in the United States. Each year about 50,000 Americans are diagnosed with some form of lymphoma, and another 30,000 die from the cancer.

Background Analogy: Cancer as a River and the Search for its Headwaters

Cancer researchers liken cancer to a river with directional flow. Like a river, cancer flows downstream toward production of disease. What researchers want to find is the upstream headwaters -- the point of origin that eventually leads to cancer.

They look for the earliest "upstream" cellular irregularities that contribute to dangerous "downstream" conditions. In this study, Mayo Clinic researchers discovered a previously unknown early, upstream event in the cancer process -- that the compounds Cyclin E and Skp2 are upstream elements that control the downstream level of p27Kip1. They found that when p27Kip1 levels are low, and when combined with the absence of CBP, conditions favor cancer.

"Low levels of p27Kip1 are often associated with human cancers and with very poor prognosis," says Dr. van Deursen. "We have shown in our research the mechanism by which p27Kip1 gets altered. Now that we know this mechanism, we can design treatments to keep levels of p27Kip1 from going down."

Dr. van Deursen notes that altered levels of p27Kip1 are not the result of a defective gene. Rather, the altered levels are the indirect result of high levels of the upstream molecules, Cyclin E and Skp2.

"If we can prevent these indirect upstream effects from happening, then the undesirable downstream events will not occur," he says.

From this finding, the Mayo Clinic cancer researchers conclude that a cooperative relationship exists between the loss of CBP and depressed levels of p27Kip1 to produce cancer.


A grant to Mayo Clinic from the Department of Defense funded this research study. Researchers from St. Jude Children’s Research Hospital in Memphis, Tenn., also contributed to the investigation.

Mary Lawson | EurekAlert!
Further information:
http://www.cancercell.org
http://www.mayo.edu/
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>