Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discover important clue to new treatments for lymphoma, breast and colon cancers

24.02.2004


Mayo Clinic researchers discover that key cancer gene cbp doesn’t work alone; Important clue to targeting new treatments for lymphoma, breast and colon cancers



Mayo Clinic cancer researchers have discovered a key partnership between two genes in mice that prevents the development of cancer of the lymph nodes, known as T-cell leukemia or lymphoma.

This first-time finding provides researchers with a promising target for designing new anti-cancer drugs that fight lymphomas, as well as other cancers in which this partnership exists, including breast and colon cancers.


The Mayo Clinic research report appears as the cover story in today’s edition of the journal, Cancer Cell, (http://www.cancercell.org). Jan van Deursen, Ph.D., a specialist in pediatric cancers with the Department of Pediatrics and a member of the Mayo Clinic Cancer Center, led the research team.

According to Dr. van Deursen, the Mayo Clinic cancer research team used specially-bred laboratory mice to demonstrate three things not previously known about the development of these types of cancer. They are the first to:
  • Provide laboratory evidence that the gene CBP is a tumor suppressor -- and that the lack of CBP contributes to the formation of lymphoma.

  • Demonstrate that the absence of CBP works in partnership with low levels of a protein called p27Kip1. When these two conditions are present, lymphoma development accelerates in mice.

  • Discover that two compounds -- Cyclin E and Skp2 -- control p27Kip1 levels.

"We not only found the tumor suppressor, we also showed what other gene defects need to occur in the same cell for cancer to progress," says Dr. van Deursen. "Cancer is not the result of a single defect, but is related to a combination of defects and events," he explains. "To find the best treatment, it’s vital to discover what combinations of changes have occurred with the cell to transform it from a normal cell into a cancer cell."

Lymphoma belongs to the hematologic malignancies group of cancers because it involves blood, bone marrow and lymph nodes. In general, it is one of the more common cancers and it is increasing in the United States. Each year about 50,000 Americans are diagnosed with some form of lymphoma, and another 30,000 die from the cancer.

Background Analogy: Cancer as a River and the Search for its Headwaters

Cancer researchers liken cancer to a river with directional flow. Like a river, cancer flows downstream toward production of disease. What researchers want to find is the upstream headwaters -- the point of origin that eventually leads to cancer.

They look for the earliest "upstream" cellular irregularities that contribute to dangerous "downstream" conditions. In this study, Mayo Clinic researchers discovered a previously unknown early, upstream event in the cancer process -- that the compounds Cyclin E and Skp2 are upstream elements that control the downstream level of p27Kip1. They found that when p27Kip1 levels are low, and when combined with the absence of CBP, conditions favor cancer.

"Low levels of p27Kip1 are often associated with human cancers and with very poor prognosis," says Dr. van Deursen. "We have shown in our research the mechanism by which p27Kip1 gets altered. Now that we know this mechanism, we can design treatments to keep levels of p27Kip1 from going down."

Dr. van Deursen notes that altered levels of p27Kip1 are not the result of a defective gene. Rather, the altered levels are the indirect result of high levels of the upstream molecules, Cyclin E and Skp2.

"If we can prevent these indirect upstream effects from happening, then the undesirable downstream events will not occur," he says.

From this finding, the Mayo Clinic cancer researchers conclude that a cooperative relationship exists between the loss of CBP and depressed levels of p27Kip1 to produce cancer.


A grant to Mayo Clinic from the Department of Defense funded this research study. Researchers from St. Jude Children’s Research Hospital in Memphis, Tenn., also contributed to the investigation.

Mary Lawson | EurekAlert!
Further information:
http://www.cancercell.org
http://www.mayo.edu/
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>