Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discover important clue to new treatments for lymphoma, breast and colon cancers

24.02.2004


Mayo Clinic researchers discover that key cancer gene cbp doesn’t work alone; Important clue to targeting new treatments for lymphoma, breast and colon cancers



Mayo Clinic cancer researchers have discovered a key partnership between two genes in mice that prevents the development of cancer of the lymph nodes, known as T-cell leukemia or lymphoma.

This first-time finding provides researchers with a promising target for designing new anti-cancer drugs that fight lymphomas, as well as other cancers in which this partnership exists, including breast and colon cancers.


The Mayo Clinic research report appears as the cover story in today’s edition of the journal, Cancer Cell, (http://www.cancercell.org). Jan van Deursen, Ph.D., a specialist in pediatric cancers with the Department of Pediatrics and a member of the Mayo Clinic Cancer Center, led the research team.

According to Dr. van Deursen, the Mayo Clinic cancer research team used specially-bred laboratory mice to demonstrate three things not previously known about the development of these types of cancer. They are the first to:
  • Provide laboratory evidence that the gene CBP is a tumor suppressor -- and that the lack of CBP contributes to the formation of lymphoma.

  • Demonstrate that the absence of CBP works in partnership with low levels of a protein called p27Kip1. When these two conditions are present, lymphoma development accelerates in mice.

  • Discover that two compounds -- Cyclin E and Skp2 -- control p27Kip1 levels.

"We not only found the tumor suppressor, we also showed what other gene defects need to occur in the same cell for cancer to progress," says Dr. van Deursen. "Cancer is not the result of a single defect, but is related to a combination of defects and events," he explains. "To find the best treatment, it’s vital to discover what combinations of changes have occurred with the cell to transform it from a normal cell into a cancer cell."

Lymphoma belongs to the hematologic malignancies group of cancers because it involves blood, bone marrow and lymph nodes. In general, it is one of the more common cancers and it is increasing in the United States. Each year about 50,000 Americans are diagnosed with some form of lymphoma, and another 30,000 die from the cancer.

Background Analogy: Cancer as a River and the Search for its Headwaters

Cancer researchers liken cancer to a river with directional flow. Like a river, cancer flows downstream toward production of disease. What researchers want to find is the upstream headwaters -- the point of origin that eventually leads to cancer.

They look for the earliest "upstream" cellular irregularities that contribute to dangerous "downstream" conditions. In this study, Mayo Clinic researchers discovered a previously unknown early, upstream event in the cancer process -- that the compounds Cyclin E and Skp2 are upstream elements that control the downstream level of p27Kip1. They found that when p27Kip1 levels are low, and when combined with the absence of CBP, conditions favor cancer.

"Low levels of p27Kip1 are often associated with human cancers and with very poor prognosis," says Dr. van Deursen. "We have shown in our research the mechanism by which p27Kip1 gets altered. Now that we know this mechanism, we can design treatments to keep levels of p27Kip1 from going down."

Dr. van Deursen notes that altered levels of p27Kip1 are not the result of a defective gene. Rather, the altered levels are the indirect result of high levels of the upstream molecules, Cyclin E and Skp2.

"If we can prevent these indirect upstream effects from happening, then the undesirable downstream events will not occur," he says.

From this finding, the Mayo Clinic cancer researchers conclude that a cooperative relationship exists between the loss of CBP and depressed levels of p27Kip1 to produce cancer.


A grant to Mayo Clinic from the Department of Defense funded this research study. Researchers from St. Jude Children’s Research Hospital in Memphis, Tenn., also contributed to the investigation.

Mary Lawson | EurekAlert!
Further information:
http://www.cancercell.org
http://www.mayo.edu/
http://www.mayoclinic.com

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>