Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic, fast fix as effective as full surgery for post-hysterectomy sagging vagina

23.02.2004


Initial testing indicates promise for the procedure



An initial Mayo Clinic study has confirmed the effectiveness and durability over time of a patient-friendly, robot-assisted procedure that corrects a complication that can follow hysterectomy. The study, published in the February issue of Urology, is the first in the United States to examine the feasibility of using this method to repair vaginal vault prolapse, or collapsed vaginal walls.

"The benefit to the patient is dramatic," says Daniel Elliott, M.D., Mayo Clinic urologist and one of the lead study authors. "It’s fast, markedly less painful and a strong repair, with much quicker recovery."


Mayo Clinic is the first medical center in the United States to offer this procedure, formally called "robotic-assisted laparoscopic sacrocolpopexy." It pins back in place the top of a vagina that has fallen down within the vaginal canal or even outside the vaginal opening.

A drooping vaginal wall most commonly occurs when the top of the vagina falls in on itself as the pelvic floor muscles lose strength following a hysterectomy, which one in nine American women undergo. Following hysterectomy, up to 10 percent of women experience sagging of the vagina that requires surgical repair.

"The uterus acts like an anchor," says Dr. Elliott. "So, if the vagina loses its support, sometimes it inverts itself and comes out."

Signs of vaginal vault prolapse include: incontinence, pain during sexual intercourse, a feeling of fullness in the pelvic region, a sore back, or a lump drooping into the vaginal canal or even protruding outside of the body through the vaginal opening. Women who have this condition may find sitting, standing and walking uncomfortable.

In the traditional full, open surgery for vaginal vault prolapse, women have to undergo a four- to five-day stay in the hospital, a sizable abdominal incision and a recovery period of about six weeks, including abstinence from intercourse. In the new robotic procedure, however, the patient is kept in the hospital only overnight and has a much reduced recovery time, although she is still advised to abstain from intercourse for six weeks. Most importantly, the patients on whom the Mayo Clinic urologists performed the new repair have yet to have any problems with recurrence of the prolapse.

In the new robotic approach, the surgeon operates remotely from a computer terminal, guiding the robotic hand that performs the surgery, rather than standing over the patient. This technique also offers 3-D vision, better ability to maneuver and reduction of any tremor that might be present in the human hand.

As this study’s aim was to test initial feasibility, it included the first five women to undergo the procedure at Mayo Clinic. Prior to the repair, two patients had grade three prolapse and three women were classified as grade four, the highest degree of prolapse.

Mayo Clinic urologists have now performed 18 robotic vaginal repair procedures, according to co-author George Chow, M.D., with equally successful or even superior results to those seen in the first five women.


For more information about this procedure, call the Mayo Clinic Urology Research Unit at 507-255-3986.

Lisa Copeland | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>