Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria: Plasmodium togetherness a strategy for breeding success


Malaria, which infects 600 million people in the world and leads annually to 2 million deaths, is the most widespread of infectious diseases. The pathological agent is a microscopic parasite of the Plasmodium genus which develops inside the host’s erythrocytes.

Plasmodia go through a series of asexual reproduction cycles before a transition takes place from asexual stages to production of sexual cells, the gametocytes or pre-gametes, in the host blood. The females of Anopheles, the mosquito vector, ingest blood and gametocytes during a nocturnal feed on human skin. The meal reaches the mosquito’s stomach where Plasmodium sexual reproduction takes place. An encounter and subsequent binding between a male and a female gametocyte produces a zygote which will give rise to infectious forms. These migrate up to the mosquito salivary glands. From there they are transmitted to humans during a second blood meal.

Experimental gametocyte counts in the blood ingested by mosquitoes that had bitten volunteers naturally infected with Plasmodium falciparum showed that these sexual forms are overdispersed, in other words they have a heterogeneous distribution in the mosquito stomach. Their numbers vary between the different blood meals taken on the same volunteer, a feature previously observed in the case of large parasites (macroparasites), such as microfilariae (250 microns).

The IRD team is researching Plasmodium biology and the modes of transmission from the vector to humans and from humans to the vector. They used a computerized simulation model (the individual based model) of gametocyte behaviour in human blood circulation and at the moment of ingestion by the mosquitoes, aiming to find an explanation for this heterogeneity and its role in the parasite’s reproduction.

In the microfilariae, nematode agents of filariases, heterogeneity in the number of parasites ingested by the mosquitoes results from queues of varying lengths they form in the capillaries. Thus a similar aggregation event might occur in Plasmodium gametocytes, even if their very small size (10 microns) theoretically predestine them for a homogeneous distribution in the mosquito stomach. Simulations tested this hypothesis, each assuming different quantities of circulating gametocytes. They showed that the heterogeneous distribution of gametocytes ingested by the mosquito is no chance feature but is density-dependent, increasing with the gametocyte density. This heterogeneity could result from gametocyte togetherness, or aggregation, in the blood capillaries, the clusters so formed persisting in the mosquito stomach where sexual reproduction takes place. Field experiments conducted in Senegal, then others in Cameroon, on blood ingested by mosquitoes from naturally infected volunteers have confirmed these results, thus validating the model the research team adopted.

Comparison of the behaviour of free and clustered gametocytes has illuminated an essential life-cycle characteristic of Plasmodium, the most extensively studied malaria parasite. Aggregation is a means of optimizing the zygote (fertilized ova) production, which results from the encounter and binding between two gametocytes of opposite sex, and therefore of enhancing the production of infectious forms and the parasite’s reproduction rate. Bound in the human host’s peripheral capillaries, male and female gametocytes ingested by a mosquito increase the likelihood of their meeting inside the propitious breeding ground the fly’s stomach provides. The gametocytes differentiate into gametes that possess no particular means of attraction, so this lover’s ritual of clustering is a sophisticated parasite reproduction strategy which compensates for its gametes’ lack of attraction mechanism. Further research is planned, with three main objectives: refining the gametocyte behaviour model; finding out the triggering mechanism behind the cell binding events, well known in the asexual forms which cause cerebral malaria; and identifying the factors that influence the cluster formation.

Marie Guillaume – DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>