Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sepsis drug also protects brain cells

19.02.2004


A compound currently used to treat patients with severe sepsis also protects brain cells in an unexpected way, say researchers at the University of Rochester Medical Center in the Feb. 19 issue of the journal Neuron.



Doctors currently use a modified version of activated protein C or APC to reduce inflammation or increase blood flow in patients with severe sepsis, and last year neuroscientist Berislav Zlokovic, M.D., Ph.D., led a team that showed that the compound also protects the cells that are vital to supply blood to the brain. In the latest paper, Zlokovic and colleagues show that the compound also directly protects vital brain cells known as neurons.

While several compounds have been shown in the laboratory to protect neurons, the latest finding is of special interest for a few reasons, says Zlokovic, who heads the Frank P. Smith Laboratories for Neurosurgical Research.


"This is a compound that’s naturally present in your body, and it’s already being used to treat people – it’s not a chemical tucked away in a laboratory," he says. In addition, one of the biggest side effects of APC is increased bleeding, and the team showed that the protection APC bestows is separate from its ability to increase blood flow and reduce inflammation. The findings open the possibility of creating a new compound that would keep brain cells healthy but without causing major side effects like increased bleeding.

Working closely with Zlokovic, Huang Guo, research assistant professor of Neurosurgery, and Dong Liu, post-doctoral fellow, showed that APC protects neurons by activating receptors known as PAR-1 and PAR-3. They showed that the compound helps protect against a variety of causes of "apoptosis," or programmed cell death, one of the major ways we all lose brain cells.

Preventing neurons from killing themselves – committing apoptosis – when they shouldn’t is a broad goal of researchers. Apoptosis often happens when cells detect danger and go into a state of hyper-signaling, much as a panicked airline crew might react as their plane plunges toward the ocean. In the brain, the process results in high levels of chemicals that kill cells and are responsible for a great deal of brain damage from stroke, brain injury, and Alzheimer’s and Huntington’s diseases.

The team showed that APC protects brain cells from such apoptosis brought about by a variety of causes, as well as apoptosis by a chemical known as staurosporine.

"This opens the door to a new class of anti-apoptotic agents based on blood factors that act directly on neurons" says Zlokovic, who is professor of Neurosurgery. "Regardless of the cause of neuronal apoptosis, neurons are able to survive in the presence of APC."

In a paper last year in Nature Medicine, the team showed that APC protects endothelial cells in the brain – the cells that form blood vessels – by preventing apoptosis of those cells. In the current paper, the team showed both in the laboratory and in mice that APC saved about 70 percent of the neurons that would have otherwise died. The benefit disappears if either PAR-1 or PAR-3 aren’t working correctly.

In addition to Zlokovic, Guo and Liu, the team from Rochester included Tong Cheng, research assistant professor; technician Rae Insalaco; and Harris Gelbard, professor of neurology. The team also included protein chemist John Griffin and Jose Fernandez of Scripps Research Institute in La Jolla, Calif.


The work was funded by the National Heart, Lung, and Blood Institute and was done in collaboration with Socratech Laboratories, a Rochester start-up company founded by Zlokovic.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>