Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sepsis drug also protects brain cells


A compound currently used to treat patients with severe sepsis also protects brain cells in an unexpected way, say researchers at the University of Rochester Medical Center in the Feb. 19 issue of the journal Neuron.

Doctors currently use a modified version of activated protein C or APC to reduce inflammation or increase blood flow in patients with severe sepsis, and last year neuroscientist Berislav Zlokovic, M.D., Ph.D., led a team that showed that the compound also protects the cells that are vital to supply blood to the brain. In the latest paper, Zlokovic and colleagues show that the compound also directly protects vital brain cells known as neurons.

While several compounds have been shown in the laboratory to protect neurons, the latest finding is of special interest for a few reasons, says Zlokovic, who heads the Frank P. Smith Laboratories for Neurosurgical Research.

"This is a compound that’s naturally present in your body, and it’s already being used to treat people – it’s not a chemical tucked away in a laboratory," he says. In addition, one of the biggest side effects of APC is increased bleeding, and the team showed that the protection APC bestows is separate from its ability to increase blood flow and reduce inflammation. The findings open the possibility of creating a new compound that would keep brain cells healthy but without causing major side effects like increased bleeding.

Working closely with Zlokovic, Huang Guo, research assistant professor of Neurosurgery, and Dong Liu, post-doctoral fellow, showed that APC protects neurons by activating receptors known as PAR-1 and PAR-3. They showed that the compound helps protect against a variety of causes of "apoptosis," or programmed cell death, one of the major ways we all lose brain cells.

Preventing neurons from killing themselves – committing apoptosis – when they shouldn’t is a broad goal of researchers. Apoptosis often happens when cells detect danger and go into a state of hyper-signaling, much as a panicked airline crew might react as their plane plunges toward the ocean. In the brain, the process results in high levels of chemicals that kill cells and are responsible for a great deal of brain damage from stroke, brain injury, and Alzheimer’s and Huntington’s diseases.

The team showed that APC protects brain cells from such apoptosis brought about by a variety of causes, as well as apoptosis by a chemical known as staurosporine.

"This opens the door to a new class of anti-apoptotic agents based on blood factors that act directly on neurons" says Zlokovic, who is professor of Neurosurgery. "Regardless of the cause of neuronal apoptosis, neurons are able to survive in the presence of APC."

In a paper last year in Nature Medicine, the team showed that APC protects endothelial cells in the brain – the cells that form blood vessels – by preventing apoptosis of those cells. In the current paper, the team showed both in the laboratory and in mice that APC saved about 70 percent of the neurons that would have otherwise died. The benefit disappears if either PAR-1 or PAR-3 aren’t working correctly.

In addition to Zlokovic, Guo and Liu, the team from Rochester included Tong Cheng, research assistant professor; technician Rae Insalaco; and Harris Gelbard, professor of neurology. The team also included protein chemist John Griffin and Jose Fernandez of Scripps Research Institute in La Jolla, Calif.

The work was funded by the National Heart, Lung, and Blood Institute and was done in collaboration with Socratech Laboratories, a Rochester start-up company founded by Zlokovic.

Tom Rickey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>