Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells can compress blood vessels, block entry of drugs

19.02.2004


MGH studies add to understanding of tumor physiology, suggest treatment strategies



A growing tumor needs an increased blood supply for its proliferating cells. But the implications of tumor-related angiogenesis – the growth of new blood vessels – are much more complex than many investigators have realized. Although these new vessels are required to nourish the tumor itself, they are disorganized and abnormal and can actually block therapeutic agents from reaching malignant cells.

In the Feb. 19 issue of Nature, researchers from Massachusetts General Hospital (MGH) describe how proliferating cancer cells compress both blood and lymphatic vessels within tumors. The findings suggest new strategies for improving the success of cancer treatment. Related studies in the February issue of Nature Medicine provide more information about improving the delivery of anticancer drugs to tumor cells.


"We’ve known for several years that internal pressure can make it difficult for many drugs to penetrate into a tumor," says Rakesh Jain, PhD, director of the Edwin Steele Laboratory in the MGH Department of Radiation Therapy, senior author of the Nature and Nature Medicine papers. "Much of our work has focused on fluid pressure within tumors, but this was the first look at solid pressure."

As described in the Nature study, fluid pressure had been assumed to be the force compressing vessels within tumors, but actual fluid pressures inside both tumors and their blood vessels are almost equal. The MGH team investigated whether solid pressure exerted by proliferating cancer cells could compromise blood supply in the same way that stepping on a hose cuts off the flow of water. Using human tumors implanted in mice, the researchers administered diphtheria toxin, which kills tissue from humans but not from mice, to selectively destroy cancer cells.

Analysis of the toxin-treated tumors found that both blood vessels and lymphatic vessels looked much more open than did vessels from untreated tumors, which were largely collapsed. However, although the treated blood vessels appeared to be functioning nearly normally, treated lymphatic vessels were not functional. "Some of the new questions we need to investigate are why decompressed lymphatics do not function, what role vessel decompression may play in tumor growth and metastasis, and how we can use vessel decompression to improve cancer treatment," say Jain, who is Cook Professor of Tumor Biology at Harvard Medical School.

One of the Nature Medicine papers may explain the mechanism of action behind the anti-angiogenesis drug Avastin (bevacizumab), which is currently in clinical trails for FDA approval. In a small group of patients with rectal cancer, the MGH researchers found that Avastin treatment reduces both the number and density of blood vessels within tumors, as well as reducing fluid pressures. Taken with the positive early results of the Avastin trials, this finding is the first clinical confirmation that normalizing the distorted blood supply within tumors could improve the results of therapy.

The second Nature Medicine report uses an advanced imaging technique to examine the structure of the tumor extracellular matrix, composed of connective tissues which block anticancer drugs from reaching tumor cells. The new imaging tool – two-photon fluorescence correlation microscopy – is a significantly better method of measuring the passage of molecules within the matrix. The MGH study revealed that the matrix actually has two components, one that is nearly liquid and a more viscous component that appears to be the most significant barrier to drug delivery. Targeting the viscous matrix component may also improve treatment results.

The Nature study was led by Timothy Padera of the Steele Laboratory. The Nature Medicine Avastin study was led by Christopher Willett, MD, of MGH Radiation Oncology, and the extracellular matrix study was led by George Alexandrakis, PhD, of the Steele Laboratory. All three studies were supported by the National Cancer Institute.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>