Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells can compress blood vessels, block entry of drugs

19.02.2004


MGH studies add to understanding of tumor physiology, suggest treatment strategies



A growing tumor needs an increased blood supply for its proliferating cells. But the implications of tumor-related angiogenesis – the growth of new blood vessels – are much more complex than many investigators have realized. Although these new vessels are required to nourish the tumor itself, they are disorganized and abnormal and can actually block therapeutic agents from reaching malignant cells.

In the Feb. 19 issue of Nature, researchers from Massachusetts General Hospital (MGH) describe how proliferating cancer cells compress both blood and lymphatic vessels within tumors. The findings suggest new strategies for improving the success of cancer treatment. Related studies in the February issue of Nature Medicine provide more information about improving the delivery of anticancer drugs to tumor cells.


"We’ve known for several years that internal pressure can make it difficult for many drugs to penetrate into a tumor," says Rakesh Jain, PhD, director of the Edwin Steele Laboratory in the MGH Department of Radiation Therapy, senior author of the Nature and Nature Medicine papers. "Much of our work has focused on fluid pressure within tumors, but this was the first look at solid pressure."

As described in the Nature study, fluid pressure had been assumed to be the force compressing vessels within tumors, but actual fluid pressures inside both tumors and their blood vessels are almost equal. The MGH team investigated whether solid pressure exerted by proliferating cancer cells could compromise blood supply in the same way that stepping on a hose cuts off the flow of water. Using human tumors implanted in mice, the researchers administered diphtheria toxin, which kills tissue from humans but not from mice, to selectively destroy cancer cells.

Analysis of the toxin-treated tumors found that both blood vessels and lymphatic vessels looked much more open than did vessels from untreated tumors, which were largely collapsed. However, although the treated blood vessels appeared to be functioning nearly normally, treated lymphatic vessels were not functional. "Some of the new questions we need to investigate are why decompressed lymphatics do not function, what role vessel decompression may play in tumor growth and metastasis, and how we can use vessel decompression to improve cancer treatment," say Jain, who is Cook Professor of Tumor Biology at Harvard Medical School.

One of the Nature Medicine papers may explain the mechanism of action behind the anti-angiogenesis drug Avastin (bevacizumab), which is currently in clinical trails for FDA approval. In a small group of patients with rectal cancer, the MGH researchers found that Avastin treatment reduces both the number and density of blood vessels within tumors, as well as reducing fluid pressures. Taken with the positive early results of the Avastin trials, this finding is the first clinical confirmation that normalizing the distorted blood supply within tumors could improve the results of therapy.

The second Nature Medicine report uses an advanced imaging technique to examine the structure of the tumor extracellular matrix, composed of connective tissues which block anticancer drugs from reaching tumor cells. The new imaging tool – two-photon fluorescence correlation microscopy – is a significantly better method of measuring the passage of molecules within the matrix. The MGH study revealed that the matrix actually has two components, one that is nearly liquid and a more viscous component that appears to be the most significant barrier to drug delivery. Targeting the viscous matrix component may also improve treatment results.

The Nature study was led by Timothy Padera of the Steele Laboratory. The Nature Medicine Avastin study was led by Christopher Willett, MD, of MGH Radiation Oncology, and the extracellular matrix study was led by George Alexandrakis, PhD, of the Steele Laboratory. All three studies were supported by the National Cancer Institute.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>