Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food-borne pathogen traced to lettuce

18.02.2004


For the first time, scientists have identified fresh produce as the source of an outbreak of human Yersinia pseudotuberculosis infections, according to an article published in the March 1 issue of The Journal of Infectious Diseases, now available online. The outbreak was identified in Finland and traced epidemiologically to farms producing lettuce.



Y. pseudotuberculosis, first identified in 1883, causes infections characterized by fever and abdominal pain that are often confused with acute appendicitis. The microbe is well known in veterinary medicine as the cause of illnesses in hares, deer, and sheep, among other animals. Y. pseudotuberculosis infections in humans are relatively rare, and while foodborne transmission has long been suspected, attempts to trace the pathogen to a concrete source of contamination in the past have been unsuccessful.

In October of 1998, two microbiology laboratories in southern Finland discovered an alarming increase in infections during routine surveillance of laboratory-diagnosed infections. J. Pekka Nuorti, of the National Public Health Institute of Finland, and colleagues from the University of Helsinki, the National Public Health Institute of Finland, and the National Food Agency of Finland initiated epidemiological and environmental investigations that would eventually reveal the source as contaminated iceberg lettuce.


In a case-control study, 38 patients with confirmed infections were questioned about what and where they ate in the two weeks before the onset of their symptoms. The investigation led to four lunch cafeterias where the patients reported eating iceberg lettuce. The lettuce served in those cafeterias was traced to four farms in the southwest archipelago region of Finland. While no lettuce remained from the shipments identified from the cafeterias, Y. pseudotuberculosis was discovered in soil, irrigation water, and lettuce samples from one of those farms. The investigators suspect that the pathogen was spread by the feces of roe deer, which have been carriers of the pathogen in the past. Deer feces were found in and around the open, unfenced fields where the lettuce was grown.

In an accompanying editorial, Robert V. Tauxe, of the Centers for Disease Control and Prevention, notes that the next step in preventing future outbreaks of this kind might begin with studying the behavior of Y. pseudotuberculosis in lettuce plants and attempting to define whether deer or other animals are the specific reservoir of the pathogen. Such investigations may lead to better methods of prevention--from fenced-in fields to vaccinations of implicated animal populations or the use of disinfecting strategies such as irradiation--and give those who enjoy fresh fruits and vegetables more security about what they eat.


Founded in 1904, The Journal of Infectious Diseases (JID) is the premier publication in the Western Hemisphere for original research on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune mechanisms. Articles in JID include research results from microbiology, immunology, epidemiology, and related disciplines. The journal is published under the auspices of the Infectious Diseases Society of America (IDSA), based in Alexandria, Va., a professional society representing more than 7,500 physicians and scientists who specialize in infectious diseases.

Diana Olson | EurekAlert!
Further information:
http://www.idsociety.org/

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>