Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells found in adults may repair nerves

18.02.2004


It used to be considered dogma that a nerve, once injured, could never be repaired. Now, researchers have learned that some nerves, even nerves in parts of the brain, can regenerate or be replaced. By studying the chemical signals that encourage or impede the repair of nerves, researchers at the University of Washington, the Salk Institute, and other institutions may contribute to eventual treatments for injured spines and diseased retinas, according to a presentation at the annual meeting of the American Association for the Advancement of Science (AAAS).



Much of this research focuses on stem cells, one of several types of general cells that can give rise to specialized cells, like neurons. It was once thought that human stem cells were only found in embryos, and in bone marrow, where they produce blood cells. But stem cells are also being found in adults, including the brain and the eye. For example, stems cells steadily replace dead neurons in the olfactory bulb, which transmits scent signals to the brain, and the hippocampal dentate gyrus, an area that organizes short-term memory.

However, the pace of stem-cell repairs in humans is slow. And in some cases, stem cells can even impede healing. Stem cells in an injured spinal cord can create a sticky scar that blocks nerve regeneration, according to Dr. Philip Horner, an assistant professor in the Department of Neurosurgery in the UW School of Medicine.


"We’ve found that the axons, the parts of the nerves that transmit signals, try to regenerate after an injury but get caught in the scar. It’s like they’re stuck in the mud," Horner said. "We’re studying ways that this process is regulated to see if it can be manipulated to promote healing. In other words, we’re looking at ways to get the axons out of the mud. One way is to make the mud less sticky by manipulating stem cells that participate in scar formation. Another is to stimulate the axons to push through the scar by providing the cut nerves with molecules that induce elongation. We’re using molecular signals called growth factors to simulate the growth of cultured nerve cells in the laboratory."

Horner and Dr. Thomas Reh, professor in the UW Department of Biological Structure, will join Dr. Fred Gage from the Salk Institute for a 12:30 p.m. session Feb. 16 on "Neural Stem Cells in Health and Disease" at the AAAS’s annual meeting in Seattle. Gage will present an overview of neural stem cells, Horner will discuss stem cells and the repair of the spinal cord, and Reh will focus on stem cells in the eye.

The same types of cells that create scar tissue in the spinal column can create new cells in the retina of the eye, especially in young animals of some species, according to Reh. The retina is a delicate light-sensitive membrane that transmits light signals to the brain. Many eyes diseases that cause blindness, such as glaucoma and as age-related-macular-regeneration, damage the retina.

Salamanders don’t get glaucoma because they can readily regenerate retinal cells. The same is true of newts, frogs, and some types of fish. "We’re trying to understand the remarkable regenerative powers of these lower vertebrates, and through this understanding, develop strategies to stimulate regeneration in the human retina," Reh said.

While salamanders can regenerate retinal cells through their life, many other species lose this ability as they age. "At some point in each species life cycle, the stem cells in the retina make a transition from a regenerative cell to a cell that will make a scar in response to injury, like the cells that cause scars in the spinal cord," Reh said. "Chickens make the transition a few weeks after hatching in most of their retina, though they retain some limited capacity to regenerate retinal cells throughout life. In rats, it’s only a matter of a few days after the cells are generated that they lose their ability to regenerate other retinal cells."

Human retinas seemingly can’t repair themselves, yet in recent studies human retinal cells have grown new neurons when cultured in the laboratory. "The hope is that many of the molecular and cellular mechanisms necessary for regeneration, that serve amphibians so well, are still in place in humans," Reh said. "Future studies from the nervous system, as well as other organ systems, should enable us to define the roadblocks in the regenerative process, and develop strategies to go around them."

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>