Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible mechanism for link between diabetes and Alzheimer’s disease discovered

17.02.2004


For some time, researchers have known that people with diabetes have a greater risk of developing Alzheimer’s disease and other forms of dementia than those without diabetes, but the exact cause of this link has not been known. Now, a new study by researchers in Cologne, Germany, and at Joslin Diabetes Center in Boston, to be published this week online in the Proceedings of the National Academy of Sciences, suggests that insulin resistance in brain cells can affect how they function, causing some of the biochemical changes typically seen in Alzheimer’s disease.



Insulin resistance is a major contributor to type 2 diabetes, obesity and the metabolic syndrome, which affect nearly one-quarter of the American population. In these insulin resistant states, tissues of the body such as muscle, liver, and fat fail to respond normally to the insulin produced by the pancreas, leading to a wide range of metabolic abnormalities. In patients with diabetes, this includes elevated blood sugar levels which, if uncontrolled, can lead to such vascular complications as blindness, limb amputations, kidney disease, heart disease, stroke and nerve damage.

Through research at Joslin Diabetes Center and elsewhere, scientists only recently have come to realize that insulin receptors are present on all tissues of the body, including the brain, and may affect the function of these tissues. Furthermore, various research findings have suggested that disruption of the insulin signaling system may occur in such disorders as Alzheimer’s disease and Parkinson’s disease. In fact, at least one large European study found people with diabetes to be at least twice as likely to develop Alzheimer’s disease as someone without the disease. The risk was even higher among those people with diabetes taking insulin.


To study the effects of insulin resistance in the brain, Jens C. Bruning, M.D., formerly of Joslin Diabetes Center and now of the University of Cologne, Germany, and his colleagues and C. Ronald Kahn, M.D., of Joslin Diabetes Center in Boston, used genetically altered mice called Neuronal Insulin Receptor Knockout (NIRKO) mice, which are missing insulin receptors in their neurons (brain cells). Previously, using these NIRKO mice, Bruning and Kahn had shown that neuron-specific insulin resistance could contribute to type 2 diabetes, loss of normal appetite control, obesity, and even infertility.

In the present study, the investigators used behavioral and memory testing, high-tech imaging, as well as a variety of biochemical tests to study metabolic processes within the brains of NIRKO mice and compare them with those of normal mice. Compared with normal mice, NIRKO mice had markedly reduced activity of insulin signaling proteins in the brain. This was found to lead to overactivity of an enzyme called GSK3 beta, which in turn, led to excessive phosphorylation (or hyperphosphorylation) of a protein called tau. Hyperphosphorylation of tau is a hallmark of brain lesions seen in Alzheimer’s disease and has been suggested to be an early marker of this disease. On the other hand, the NIRKO mice showed no changes in the proliferation or survival of neurons, memory, or basal brain glucose metabolism, suggesting that insulin resistance may interact with other risk factors to promote full-blown Alzheimer’s disease.

Although further research is clearly needed to clarify how insulin resistance in the neurons in the brain interacts with other genetic and biochemical abnormalities in the development of Alzheimer’s and other neurodegenerative diseases, Dr. Kahn points out, "This is the first clear demonstration of a biochemical link between insulin resistance and Alzheimer’s disease, and it points to how understanding and developing new treatments for insulin resistance may have impact not only in diabetes, but in many other common chronic diseases."


About Joslin Diabetes Center

Joslin Diabetes Center, the global leader in diabetes research, care and education, is uniquely qualified to lead the battle against diabetes in the 21st century. Joslin Research is a team of over 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit www.joslin.org.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.org/main.shtml

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>