Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible mechanism for link between diabetes and Alzheimer’s disease discovered

17.02.2004


For some time, researchers have known that people with diabetes have a greater risk of developing Alzheimer’s disease and other forms of dementia than those without diabetes, but the exact cause of this link has not been known. Now, a new study by researchers in Cologne, Germany, and at Joslin Diabetes Center in Boston, to be published this week online in the Proceedings of the National Academy of Sciences, suggests that insulin resistance in brain cells can affect how they function, causing some of the biochemical changes typically seen in Alzheimer’s disease.



Insulin resistance is a major contributor to type 2 diabetes, obesity and the metabolic syndrome, which affect nearly one-quarter of the American population. In these insulin resistant states, tissues of the body such as muscle, liver, and fat fail to respond normally to the insulin produced by the pancreas, leading to a wide range of metabolic abnormalities. In patients with diabetes, this includes elevated blood sugar levels which, if uncontrolled, can lead to such vascular complications as blindness, limb amputations, kidney disease, heart disease, stroke and nerve damage.

Through research at Joslin Diabetes Center and elsewhere, scientists only recently have come to realize that insulin receptors are present on all tissues of the body, including the brain, and may affect the function of these tissues. Furthermore, various research findings have suggested that disruption of the insulin signaling system may occur in such disorders as Alzheimer’s disease and Parkinson’s disease. In fact, at least one large European study found people with diabetes to be at least twice as likely to develop Alzheimer’s disease as someone without the disease. The risk was even higher among those people with diabetes taking insulin.


To study the effects of insulin resistance in the brain, Jens C. Bruning, M.D., formerly of Joslin Diabetes Center and now of the University of Cologne, Germany, and his colleagues and C. Ronald Kahn, M.D., of Joslin Diabetes Center in Boston, used genetically altered mice called Neuronal Insulin Receptor Knockout (NIRKO) mice, which are missing insulin receptors in their neurons (brain cells). Previously, using these NIRKO mice, Bruning and Kahn had shown that neuron-specific insulin resistance could contribute to type 2 diabetes, loss of normal appetite control, obesity, and even infertility.

In the present study, the investigators used behavioral and memory testing, high-tech imaging, as well as a variety of biochemical tests to study metabolic processes within the brains of NIRKO mice and compare them with those of normal mice. Compared with normal mice, NIRKO mice had markedly reduced activity of insulin signaling proteins in the brain. This was found to lead to overactivity of an enzyme called GSK3 beta, which in turn, led to excessive phosphorylation (or hyperphosphorylation) of a protein called tau. Hyperphosphorylation of tau is a hallmark of brain lesions seen in Alzheimer’s disease and has been suggested to be an early marker of this disease. On the other hand, the NIRKO mice showed no changes in the proliferation or survival of neurons, memory, or basal brain glucose metabolism, suggesting that insulin resistance may interact with other risk factors to promote full-blown Alzheimer’s disease.

Although further research is clearly needed to clarify how insulin resistance in the neurons in the brain interacts with other genetic and biochemical abnormalities in the development of Alzheimer’s and other neurodegenerative diseases, Dr. Kahn points out, "This is the first clear demonstration of a biochemical link between insulin resistance and Alzheimer’s disease, and it points to how understanding and developing new treatments for insulin resistance may have impact not only in diabetes, but in many other common chronic diseases."


About Joslin Diabetes Center

Joslin Diabetes Center, the global leader in diabetes research, care and education, is uniquely qualified to lead the battle against diabetes in the 21st century. Joslin Research is a team of over 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit www.joslin.org.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.org/main.shtml

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>