Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid diarrhoea test saves lives

16.02.2004


Diarrhoea, a worldwide killer, could be diagnosed more rapidly thanks to a new diagnostic test devised by researchers at the University of Bristol and the University of the West of England. It is anticipated that this will lead to the development of a device capable of diagnosis at the bedside, saving both lives and money.



The new test produces a chemical fingerprint for different strains of viral and bacterial infection and allows them to be differentiated from ‘normal’ controls, according to a recent report published in the British Medical Journal ‘Gut’.

The report is the result of a two-year collaboration between Professor Norman Ratcliffe at the University of the West of England and Dr Chris Probert from the School of Medicine at the University of Bristol, who is also a Consultant Physician at Bristol Royal Infirmary.


Dr Probert said: “There are numerous kinds of infection that cause diarrhoea and it is important to ensure that the correct diagnoses is made so that the correct treatment can be prescribed. Diagnosis currently requires a microbiological stool analysis which can take up to eight days for results to be obtained. This delay is caused by the need to transport samples to an appropriate laboratory, and the time required to complete the diagnostic techniques. In extreme cases samples have been flown from Asia to the US for tests, allowing the disease to spread and kill in the meantime.

“Hospitals wards in the UK have sometimes had to close because of the fast spread of viruses that are not detected early enough for infected patients to be isolated. This causes enormous strain on hospital resources and of course it can be very expensive.”

Professor Norman Ratcliffe who leads the team of researchers at UWE explains: “This test has the potential to reduce mortality and unnecessary suffering and, crucially, the spread of infection. It has long been known that stools have distinctive and different odours if there is an infection. What we have done is to take this ‘knowledge’ a step further by analysing the odour to see if precise chemical fingerprints can be established. Put simply, the odours, or ‘volatiles’, from normal, bacterial and viral stools differ significantly in their chemical composition. By using portable instruments we can identify which volatiles are found in a stool sample in less than an hour of the sample collection being made, and use this information to make a rapid diagnosis.

“This study is about to enter its second phase where a larger population of infected samples will be analysed. The ultimate goal will be to develop a portable vapour analysis machine, capable of diagnosing at the bedside.”

This pilot project has the potential to save lives and reduce the cost burden to the NHS. Early isolation of infectious patients would reduce hospital outbreaks leading to fewer ward/hospital closures. Early diagnosis would lead to more appropriate use of antibiotics. Diarrhoea is a major cause of morbidity and mortality in developing countries and costs the NHS £60 million each year. Every year in England and Wales there are 15,000 cases of ‘clostridium difficile’ infection, one of the most common causes of diarrhoea, and worldwide 6,800 children die every day from diarrhoeal disease.

Cherry Lewis | alfa
Further information:
http://gut.bmjjournals.com/cgi/content/full/53/1/58

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>