Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVA researchers make cellular model of Parkinson’s disease

13.02.2004


For the first time, scientists at the University of Virginia Health System have engineered cells that produce the pathological hallmark found in the brain cells of all patients with Parkinson’s disease – Lewy bodies, tiny balls of damaged protein, found only in the brain and discovered more than ninety years ago.



The U.Va. research on Lewy bodies means that scientists now have a model of the pathological changes found in Parkinson’s disease “in a dish” and can use this cellular model for experiments that may show promise in treating or reversing the effects of Parkinson’s. The research is published in the February 2004 issue of the Journal of Neurochemistry, which can be accessed on the web at: http://www.jneurochem.org/current.shtml.

“The best way we can study Parkinson’s is through a model that replicates the pathological features of the disease,” said Patricia Trimmer, lead author of the study and associate professor of research at U.Va.’s Department of Neurology. “Previously, the only way we could study Lewy bodies was in brain samples from patients with advanced Parkinson’s disease who had died. This cell culture system provides us with a living pathological model, a new tool.”


Symptoms of Parkinson’s disease include tremors, rigidity, slowing of movement and difficulty with posture and balance. The disease is caused by the degeneration of nerve cells in a part of the brain, called the substantia nigra, responsible for the production of dopamine, which is essential for nerve cells to function. Up to one million Americans suffer from Parkinson’s and incidence increases with age, according to the Parkinson’s Disease Foundation. There is no cure for the disease, but there are treatment options such as surgery and medication to manage the symptoms.

So far, little is known about the development and function of Lewy bodies. With this new model, researchers and clinicians at U.Va. now can study how Lewy bodies form to determine if they are good or bad for the cell. “Clearly something has happened in the cell for Lewy bodies to develop, we just don’t know what,” Trimmer said. “So the question becomes, how can we stop Lewy bodies from forming? Or if Lewy bodies are good, how do we keep them growing? If I stress the cell with free radicals will it make Lewy bodies? Can I interfere with how Lewy bodies are being made? We here at U.Va. are designing experiments now to answer those and many other questions.”

Trimmer and her colleagues at U.Va.’s neurology department worked for more than five years to characterize this cellular hybrid or “cybrid” model of the pathology of a Parkinson’s brain cell. Using a process developed by U.Va. neurologist Dr. W. Davis Parker, Jr., Trimmer and her colleagues treated a human cell line (neuroblastoma) with a chemical that destroyed the DNA found in the cell’s mitochondria, the cellular “power house” responsible for energy production.

Previous research at U.Va., published in the Feb. 1997 issue of the Annals of Neurology, found that Parkinson’s could be passed on by the mother through mutations of mitochondrial DNA. U.Va. researchers found a preponderance of maternal inheritance in families where a Parkinson’s patient has both an affected parent and sibling.

Mitochondrial DNA derived from platelets donated by Parkinson’s disease patients was inserted into these human neuroblastoma cells. To Trimmer’s surprise, Lewy bodies appeared under the microscope several months later. “The only thing we put in these neuroblastoma cells that persists is the mitoDNA and whatever proteins they encode,” Trimmer said. “Something is clearly disturbing the cellular functions so badly that the cell manufactures Lewy bodies and this happens just because we inserted the mitoDNA from a Parkinson’s patient.”

“This work by Pat Trimmer and her colleagues establishes that the cybrid model of Parkinson’s is the most valid model of sporadic Parkinson’s available today,” said Dr. James Bennett, professor of neurology at U.Va. and Director of the Center for the Study of Neurodegenerative Diseases. “The Lewy bodies arose spontaneously and are such perfect replicas of what is found it the brain.”

Much published research on Parkinson’s involves the study of genes responsible for rare forms of the disease. But the work by the U.Va. team resulted in a model that produces Lewy bodies in sporadic Parkinson’s that afflicts 98 percent or more of Parkinson’s patients, according to Bennett. “Our work shows that mitochondrial DNA is altered in Parkinson’s and can recreate the disease pathology inside cells,” he said.

The study was funded by a grant from the National Institute of Neurological Disorders and Stroke.

Bob Beard | U Virginia Health System
Further information:
http://www.healthsystem.virginia.edu/internet/news/Archives04/parkinsons-study04.cfm
http://www.jneurochem.org/current.shtml

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>