Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVA researchers make cellular model of Parkinson’s disease

13.02.2004


For the first time, scientists at the University of Virginia Health System have engineered cells that produce the pathological hallmark found in the brain cells of all patients with Parkinson’s disease – Lewy bodies, tiny balls of damaged protein, found only in the brain and discovered more than ninety years ago.



The U.Va. research on Lewy bodies means that scientists now have a model of the pathological changes found in Parkinson’s disease “in a dish” and can use this cellular model for experiments that may show promise in treating or reversing the effects of Parkinson’s. The research is published in the February 2004 issue of the Journal of Neurochemistry, which can be accessed on the web at: http://www.jneurochem.org/current.shtml.

“The best way we can study Parkinson’s is through a model that replicates the pathological features of the disease,” said Patricia Trimmer, lead author of the study and associate professor of research at U.Va.’s Department of Neurology. “Previously, the only way we could study Lewy bodies was in brain samples from patients with advanced Parkinson’s disease who had died. This cell culture system provides us with a living pathological model, a new tool.”


Symptoms of Parkinson’s disease include tremors, rigidity, slowing of movement and difficulty with posture and balance. The disease is caused by the degeneration of nerve cells in a part of the brain, called the substantia nigra, responsible for the production of dopamine, which is essential for nerve cells to function. Up to one million Americans suffer from Parkinson’s and incidence increases with age, according to the Parkinson’s Disease Foundation. There is no cure for the disease, but there are treatment options such as surgery and medication to manage the symptoms.

So far, little is known about the development and function of Lewy bodies. With this new model, researchers and clinicians at U.Va. now can study how Lewy bodies form to determine if they are good or bad for the cell. “Clearly something has happened in the cell for Lewy bodies to develop, we just don’t know what,” Trimmer said. “So the question becomes, how can we stop Lewy bodies from forming? Or if Lewy bodies are good, how do we keep them growing? If I stress the cell with free radicals will it make Lewy bodies? Can I interfere with how Lewy bodies are being made? We here at U.Va. are designing experiments now to answer those and many other questions.”

Trimmer and her colleagues at U.Va.’s neurology department worked for more than five years to characterize this cellular hybrid or “cybrid” model of the pathology of a Parkinson’s brain cell. Using a process developed by U.Va. neurologist Dr. W. Davis Parker, Jr., Trimmer and her colleagues treated a human cell line (neuroblastoma) with a chemical that destroyed the DNA found in the cell’s mitochondria, the cellular “power house” responsible for energy production.

Previous research at U.Va., published in the Feb. 1997 issue of the Annals of Neurology, found that Parkinson’s could be passed on by the mother through mutations of mitochondrial DNA. U.Va. researchers found a preponderance of maternal inheritance in families where a Parkinson’s patient has both an affected parent and sibling.

Mitochondrial DNA derived from platelets donated by Parkinson’s disease patients was inserted into these human neuroblastoma cells. To Trimmer’s surprise, Lewy bodies appeared under the microscope several months later. “The only thing we put in these neuroblastoma cells that persists is the mitoDNA and whatever proteins they encode,” Trimmer said. “Something is clearly disturbing the cellular functions so badly that the cell manufactures Lewy bodies and this happens just because we inserted the mitoDNA from a Parkinson’s patient.”

“This work by Pat Trimmer and her colleagues establishes that the cybrid model of Parkinson’s is the most valid model of sporadic Parkinson’s available today,” said Dr. James Bennett, professor of neurology at U.Va. and Director of the Center for the Study of Neurodegenerative Diseases. “The Lewy bodies arose spontaneously and are such perfect replicas of what is found it the brain.”

Much published research on Parkinson’s involves the study of genes responsible for rare forms of the disease. But the work by the U.Va. team resulted in a model that produces Lewy bodies in sporadic Parkinson’s that afflicts 98 percent or more of Parkinson’s patients, according to Bennett. “Our work shows that mitochondrial DNA is altered in Parkinson’s and can recreate the disease pathology inside cells,” he said.

The study was funded by a grant from the National Institute of Neurological Disorders and Stroke.

Bob Beard | U Virginia Health System
Further information:
http://www.healthsystem.virginia.edu/internet/news/Archives04/parkinsons-study04.cfm
http://www.jneurochem.org/current.shtml

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>