Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVA researchers make cellular model of Parkinson’s disease

13.02.2004


For the first time, scientists at the University of Virginia Health System have engineered cells that produce the pathological hallmark found in the brain cells of all patients with Parkinson’s disease – Lewy bodies, tiny balls of damaged protein, found only in the brain and discovered more than ninety years ago.



The U.Va. research on Lewy bodies means that scientists now have a model of the pathological changes found in Parkinson’s disease “in a dish” and can use this cellular model for experiments that may show promise in treating or reversing the effects of Parkinson’s. The research is published in the February 2004 issue of the Journal of Neurochemistry, which can be accessed on the web at: http://www.jneurochem.org/current.shtml.

“The best way we can study Parkinson’s is through a model that replicates the pathological features of the disease,” said Patricia Trimmer, lead author of the study and associate professor of research at U.Va.’s Department of Neurology. “Previously, the only way we could study Lewy bodies was in brain samples from patients with advanced Parkinson’s disease who had died. This cell culture system provides us with a living pathological model, a new tool.”


Symptoms of Parkinson’s disease include tremors, rigidity, slowing of movement and difficulty with posture and balance. The disease is caused by the degeneration of nerve cells in a part of the brain, called the substantia nigra, responsible for the production of dopamine, which is essential for nerve cells to function. Up to one million Americans suffer from Parkinson’s and incidence increases with age, according to the Parkinson’s Disease Foundation. There is no cure for the disease, but there are treatment options such as surgery and medication to manage the symptoms.

So far, little is known about the development and function of Lewy bodies. With this new model, researchers and clinicians at U.Va. now can study how Lewy bodies form to determine if they are good or bad for the cell. “Clearly something has happened in the cell for Lewy bodies to develop, we just don’t know what,” Trimmer said. “So the question becomes, how can we stop Lewy bodies from forming? Or if Lewy bodies are good, how do we keep them growing? If I stress the cell with free radicals will it make Lewy bodies? Can I interfere with how Lewy bodies are being made? We here at U.Va. are designing experiments now to answer those and many other questions.”

Trimmer and her colleagues at U.Va.’s neurology department worked for more than five years to characterize this cellular hybrid or “cybrid” model of the pathology of a Parkinson’s brain cell. Using a process developed by U.Va. neurologist Dr. W. Davis Parker, Jr., Trimmer and her colleagues treated a human cell line (neuroblastoma) with a chemical that destroyed the DNA found in the cell’s mitochondria, the cellular “power house” responsible for energy production.

Previous research at U.Va., published in the Feb. 1997 issue of the Annals of Neurology, found that Parkinson’s could be passed on by the mother through mutations of mitochondrial DNA. U.Va. researchers found a preponderance of maternal inheritance in families where a Parkinson’s patient has both an affected parent and sibling.

Mitochondrial DNA derived from platelets donated by Parkinson’s disease patients was inserted into these human neuroblastoma cells. To Trimmer’s surprise, Lewy bodies appeared under the microscope several months later. “The only thing we put in these neuroblastoma cells that persists is the mitoDNA and whatever proteins they encode,” Trimmer said. “Something is clearly disturbing the cellular functions so badly that the cell manufactures Lewy bodies and this happens just because we inserted the mitoDNA from a Parkinson’s patient.”

“This work by Pat Trimmer and her colleagues establishes that the cybrid model of Parkinson’s is the most valid model of sporadic Parkinson’s available today,” said Dr. James Bennett, professor of neurology at U.Va. and Director of the Center for the Study of Neurodegenerative Diseases. “The Lewy bodies arose spontaneously and are such perfect replicas of what is found it the brain.”

Much published research on Parkinson’s involves the study of genes responsible for rare forms of the disease. But the work by the U.Va. team resulted in a model that produces Lewy bodies in sporadic Parkinson’s that afflicts 98 percent or more of Parkinson’s patients, according to Bennett. “Our work shows that mitochondrial DNA is altered in Parkinson’s and can recreate the disease pathology inside cells,” he said.

The study was funded by a grant from the National Institute of Neurological Disorders and Stroke.

Bob Beard | U Virginia Health System
Further information:
http://www.healthsystem.virginia.edu/internet/news/Archives04/parkinsons-study04.cfm
http://www.jneurochem.org/current.shtml

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>