Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVA researchers make cellular model of Parkinson’s disease

13.02.2004


For the first time, scientists at the University of Virginia Health System have engineered cells that produce the pathological hallmark found in the brain cells of all patients with Parkinson’s disease – Lewy bodies, tiny balls of damaged protein, found only in the brain and discovered more than ninety years ago.



The U.Va. research on Lewy bodies means that scientists now have a model of the pathological changes found in Parkinson’s disease “in a dish” and can use this cellular model for experiments that may show promise in treating or reversing the effects of Parkinson’s. The research is published in the February 2004 issue of the Journal of Neurochemistry, which can be accessed on the web at: http://www.jneurochem.org/current.shtml.

“The best way we can study Parkinson’s is through a model that replicates the pathological features of the disease,” said Patricia Trimmer, lead author of the study and associate professor of research at U.Va.’s Department of Neurology. “Previously, the only way we could study Lewy bodies was in brain samples from patients with advanced Parkinson’s disease who had died. This cell culture system provides us with a living pathological model, a new tool.”


Symptoms of Parkinson’s disease include tremors, rigidity, slowing of movement and difficulty with posture and balance. The disease is caused by the degeneration of nerve cells in a part of the brain, called the substantia nigra, responsible for the production of dopamine, which is essential for nerve cells to function. Up to one million Americans suffer from Parkinson’s and incidence increases with age, according to the Parkinson’s Disease Foundation. There is no cure for the disease, but there are treatment options such as surgery and medication to manage the symptoms.

So far, little is known about the development and function of Lewy bodies. With this new model, researchers and clinicians at U.Va. now can study how Lewy bodies form to determine if they are good or bad for the cell. “Clearly something has happened in the cell for Lewy bodies to develop, we just don’t know what,” Trimmer said. “So the question becomes, how can we stop Lewy bodies from forming? Or if Lewy bodies are good, how do we keep them growing? If I stress the cell with free radicals will it make Lewy bodies? Can I interfere with how Lewy bodies are being made? We here at U.Va. are designing experiments now to answer those and many other questions.”

Trimmer and her colleagues at U.Va.’s neurology department worked for more than five years to characterize this cellular hybrid or “cybrid” model of the pathology of a Parkinson’s brain cell. Using a process developed by U.Va. neurologist Dr. W. Davis Parker, Jr., Trimmer and her colleagues treated a human cell line (neuroblastoma) with a chemical that destroyed the DNA found in the cell’s mitochondria, the cellular “power house” responsible for energy production.

Previous research at U.Va., published in the Feb. 1997 issue of the Annals of Neurology, found that Parkinson’s could be passed on by the mother through mutations of mitochondrial DNA. U.Va. researchers found a preponderance of maternal inheritance in families where a Parkinson’s patient has both an affected parent and sibling.

Mitochondrial DNA derived from platelets donated by Parkinson’s disease patients was inserted into these human neuroblastoma cells. To Trimmer’s surprise, Lewy bodies appeared under the microscope several months later. “The only thing we put in these neuroblastoma cells that persists is the mitoDNA and whatever proteins they encode,” Trimmer said. “Something is clearly disturbing the cellular functions so badly that the cell manufactures Lewy bodies and this happens just because we inserted the mitoDNA from a Parkinson’s patient.”

“This work by Pat Trimmer and her colleagues establishes that the cybrid model of Parkinson’s is the most valid model of sporadic Parkinson’s available today,” said Dr. James Bennett, professor of neurology at U.Va. and Director of the Center for the Study of Neurodegenerative Diseases. “The Lewy bodies arose spontaneously and are such perfect replicas of what is found it the brain.”

Much published research on Parkinson’s involves the study of genes responsible for rare forms of the disease. But the work by the U.Va. team resulted in a model that produces Lewy bodies in sporadic Parkinson’s that afflicts 98 percent or more of Parkinson’s patients, according to Bennett. “Our work shows that mitochondrial DNA is altered in Parkinson’s and can recreate the disease pathology inside cells,” he said.

The study was funded by a grant from the National Institute of Neurological Disorders and Stroke.

Bob Beard | U Virginia Health System
Further information:
http://www.healthsystem.virginia.edu/internet/news/Archives04/parkinsons-study04.cfm
http://www.jneurochem.org/current.shtml

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>