Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting hard-to-kill fungal infections

13.02.2004


Killing the disease without killing the patient is an old dilemma for doctors fighting cancer and some of the tougher microorganisms such as fungal infections in individuals with suppressed immune systems. Drugs have little effect when a patient’s own immune system isn’t available to help, and these fungi can resist external radiation that would kill even a perfectly healthy human. But they can be easily killed by a very small dose of radiation inside their cells.



Monoclonal antibodies can be designed to deliver radiation to specific cell types while sparing surrounding tissue. These designer antibodies, armed with radioactive isotopes, have been found to be highly effective against some types of cancer, but the combination may also be useful in other types of serious disease. This technique is known as radioimmunotherapy (RIT).

A study appearing in the February issue of The Journal of Nuclear Medicine demonstrates that radioimmunotherapy (RIT) provides a new, highly effective way to kill Cryptococcus neoformans and Histoplasma capsulatum, the fungi responsible for fungal meningitis and pneumonia, using much smaller levels of radiation than required to kill the fungi by external radiation. The study used organism-specific monoclonal antibodies coupled with radioactive isotopes of bismuth or rhenium.


"Our results demonstrate that particulate radiation delivered by organism-specific radiolabeled antibodies is orders of magnitude more efficient in killing human pathogenic fungi than external gamma radiation," stated lead investigator Ekaterina Dadachova of the Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx. "The results provide strong experimental support for the concept of using RIT as a method to target not only fungal infections but also other microorganisms – especially multi-drug resistant ones."

Susceptibility of the Human Pathogenic Fungi Cryptococcus neoformans and Histoplasma capsulatum to ã-Radiation versus Radioimmunotherapy with á- and â-Emitting Radioisotopes was written by Ekaterina Dadachova, PhD, Ruth A. Bryan, PhD and Annie Frenkel, BA, from the Department of Nuclear Medicine; Joshua D. Nosanchuk, MD from the Department of Medicine; Arturo Casadevall, MD, PhD, from the Departments of Medicine and Microbiology and Immunology; all from the Albert Einstein College of Medicine, Bronx, NY and Roger W. Howell, PhD, from the Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ.


Copies of the article and an image related to the study are available to media upon request to Gavin McDonald. Current and past issues of The Journal of Nuclear Medicine can be found online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; email: servicecenter@snm.org. A yearly subscription to the journal is $210 for individuals and $318 for institutions. A subscription is a Society of Nuclear Medicine member benefit.

The Society of Nuclear Medicine is an international scientific and professional organization of more than 14,000 members dedicated to promoting the science, technology, and practical applications of nuclear medicine. The SNM is based in Reston, VA.

Gavin McDonald | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>