Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting hard-to-kill fungal infections

13.02.2004


Killing the disease without killing the patient is an old dilemma for doctors fighting cancer and some of the tougher microorganisms such as fungal infections in individuals with suppressed immune systems. Drugs have little effect when a patient’s own immune system isn’t available to help, and these fungi can resist external radiation that would kill even a perfectly healthy human. But they can be easily killed by a very small dose of radiation inside their cells.



Monoclonal antibodies can be designed to deliver radiation to specific cell types while sparing surrounding tissue. These designer antibodies, armed with radioactive isotopes, have been found to be highly effective against some types of cancer, but the combination may also be useful in other types of serious disease. This technique is known as radioimmunotherapy (RIT).

A study appearing in the February issue of The Journal of Nuclear Medicine demonstrates that radioimmunotherapy (RIT) provides a new, highly effective way to kill Cryptococcus neoformans and Histoplasma capsulatum, the fungi responsible for fungal meningitis and pneumonia, using much smaller levels of radiation than required to kill the fungi by external radiation. The study used organism-specific monoclonal antibodies coupled with radioactive isotopes of bismuth or rhenium.


"Our results demonstrate that particulate radiation delivered by organism-specific radiolabeled antibodies is orders of magnitude more efficient in killing human pathogenic fungi than external gamma radiation," stated lead investigator Ekaterina Dadachova of the Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx. "The results provide strong experimental support for the concept of using RIT as a method to target not only fungal infections but also other microorganisms – especially multi-drug resistant ones."

Susceptibility of the Human Pathogenic Fungi Cryptococcus neoformans and Histoplasma capsulatum to ã-Radiation versus Radioimmunotherapy with á- and â-Emitting Radioisotopes was written by Ekaterina Dadachova, PhD, Ruth A. Bryan, PhD and Annie Frenkel, BA, from the Department of Nuclear Medicine; Joshua D. Nosanchuk, MD from the Department of Medicine; Arturo Casadevall, MD, PhD, from the Departments of Medicine and Microbiology and Immunology; all from the Albert Einstein College of Medicine, Bronx, NY and Roger W. Howell, PhD, from the Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ.


Copies of the article and an image related to the study are available to media upon request to Gavin McDonald. Current and past issues of The Journal of Nuclear Medicine can be found online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; email: servicecenter@snm.org. A yearly subscription to the journal is $210 for individuals and $318 for institutions. A subscription is a Society of Nuclear Medicine member benefit.

The Society of Nuclear Medicine is an international scientific and professional organization of more than 14,000 members dedicated to promoting the science, technology, and practical applications of nuclear medicine. The SNM is based in Reston, VA.

Gavin McDonald | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>