Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting hard-to-kill fungal infections

13.02.2004


Killing the disease without killing the patient is an old dilemma for doctors fighting cancer and some of the tougher microorganisms such as fungal infections in individuals with suppressed immune systems. Drugs have little effect when a patient’s own immune system isn’t available to help, and these fungi can resist external radiation that would kill even a perfectly healthy human. But they can be easily killed by a very small dose of radiation inside their cells.



Monoclonal antibodies can be designed to deliver radiation to specific cell types while sparing surrounding tissue. These designer antibodies, armed with radioactive isotopes, have been found to be highly effective against some types of cancer, but the combination may also be useful in other types of serious disease. This technique is known as radioimmunotherapy (RIT).

A study appearing in the February issue of The Journal of Nuclear Medicine demonstrates that radioimmunotherapy (RIT) provides a new, highly effective way to kill Cryptococcus neoformans and Histoplasma capsulatum, the fungi responsible for fungal meningitis and pneumonia, using much smaller levels of radiation than required to kill the fungi by external radiation. The study used organism-specific monoclonal antibodies coupled with radioactive isotopes of bismuth or rhenium.


"Our results demonstrate that particulate radiation delivered by organism-specific radiolabeled antibodies is orders of magnitude more efficient in killing human pathogenic fungi than external gamma radiation," stated lead investigator Ekaterina Dadachova of the Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx. "The results provide strong experimental support for the concept of using RIT as a method to target not only fungal infections but also other microorganisms – especially multi-drug resistant ones."

Susceptibility of the Human Pathogenic Fungi Cryptococcus neoformans and Histoplasma capsulatum to ã-Radiation versus Radioimmunotherapy with á- and â-Emitting Radioisotopes was written by Ekaterina Dadachova, PhD, Ruth A. Bryan, PhD and Annie Frenkel, BA, from the Department of Nuclear Medicine; Joshua D. Nosanchuk, MD from the Department of Medicine; Arturo Casadevall, MD, PhD, from the Departments of Medicine and Microbiology and Immunology; all from the Albert Einstein College of Medicine, Bronx, NY and Roger W. Howell, PhD, from the Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ.


Copies of the article and an image related to the study are available to media upon request to Gavin McDonald. Current and past issues of The Journal of Nuclear Medicine can be found online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; email: servicecenter@snm.org. A yearly subscription to the journal is $210 for individuals and $318 for institutions. A subscription is a Society of Nuclear Medicine member benefit.

The Society of Nuclear Medicine is an international scientific and professional organization of more than 14,000 members dedicated to promoting the science, technology, and practical applications of nuclear medicine. The SNM is based in Reston, VA.

Gavin McDonald | EurekAlert!
Further information:
http://www.snm.org/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>