Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone released by bone marrow cells may hasten recovery from brain injury

13.02.2004


Bone marrow stromal cells release a blood vessel-dilating hormone found in the brain -- a finding that suggests the hormone may be tapped to help with recovery from stroke or other neurological injuries disrupting blood flow to the central nervous system, researchers at the University of South Florida and James A. Haley Veterans’ Hospital report for the first time. The hormone is known as brain natriuretic peptide.



The laboratory study was published in the January 2004 issue of the journal Experimental Neurology.

"We’re suggesting that transplanted bone marrow stromal cells may hasten recovery by releasing brain natriuretic peptide and other factors that improve blood flow to the brain and decrease swelling and pressure around the site of injury," said lead investigator Juan Sanchez-Ramos, MD, PhD, professor of neurology and research director at the USF Center for Aging and Brain Repair. "By helping irrigate, or restore the blood circulation to the brain, brain natriuretic factor may reduce the extent of damage from stroke or spinal cord injuries."


Researchers at USF and other institutions have demonstrated that some cells from adult bone marrow can be converted with growth factors and other agents into immature nerve cells -- both in the laboratory and following transplant into animals. Furthermore, rats suffering from stroke or other traumatic brain injury recover neurological function quicker following intravenous infusions of bone marrow stromal cells.

However, no one has proven that this recovery results from converted bone marrow cells directly replacing or repairing damaged neurons. A growing number of scientists, including Dr. Sanchez-Ramos, hypothesize that growth factors, cytokines and other substances secreted by bone marrow cells may play a more important role than first realized in recovery from neurological injuries.

The USF researchers identify bone marrow-derived brain natriuretic factor (BNP) as a potential candidate for treating stroke, spinal cord injury and other neurological damage. Although found in the brain, BNP belongs to a family of atrial natriuretic peptides, hormones made by the heart that exhibit powerful diuretic and blood pressure-lowering characteristics. In rat models of stroke, these atrial natriuretic peptides have been reported to decrease brain swelling or edema.

Human bone marrow is capable of producing significant amounts of BNP, the USF researchers demonstrated. Bone marrow stromal cells grown in the laboratory secreted levels of BNP far exceeding the amounts normally found in circulating blood and spinal fluid.

The researchers next plan to measure the effects of BNP from bone marrow cells transplanted into rats with strokes and spinal cord injuries.

Anne DeLotto Baier | EurekAlert!
Further information:
http://hsc.usf.edu/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>