Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps scientists say genetic mutation doesn’t protect against HIV and plague

12.02.2004


A group of scientists at The Scripps Research Institute have provided strong evidence that a popular hypothesis concerning the origins of a genetic mutation common among Caucasians of Northern European descent that protects against human immunodeficiency virus (HIV) is wrong.



The hypothesis suggests that the mutation conferred resistance against bubonic plague in the Middle Ages, much as it does against HIV today. This idea was based on the fact that the mutation first appeared around the same time that the "Black Death" plague epidemic killed a third of Europe’s population in the years 1346-1352. Since HIV was not present in Europe at this time, individuals with the mutation must have been protected against some other disease.

In a brief communication to be published this week in the journal Nature, Scripps Research Immunology Professor Donald Mosier and his colleagues show this hypothesis to be incorrect.


Mosier performed studies that demonstrate that the mutation does not protect against plague infection in mouse models and that it is unlikely to have offered any protection against the plague in humans during the Middle Ages.

An Important Receptor

The mutation in question is in the C-C chemokine receptor 5 gene, which makes the human receptor protein called CCR5. CCR5 is a seven trans-membrane spanning protein of 332 amino acids that inserts into the cell membranes of human CD4+ T helper cells. HIV particles use CCR5 to gain entry into CD4+ T cells.

The CCR5 32 mutation -- a deletion of 32 bases of DNA from the CCR5 gene -- was first identified in 1996 in individuals who seemed to be protected from infection with HIV despite having had multiple high-risk exposures to the virus.

The resistant individuals all had the 32-base pair mutation in their CCR5 genes, and that left them with CD4+ T cells with no CCR5 receptors, conferring resistance to HIV infection. Later data showed that individuals who were heterozygous for the mutation had lower CCR5 expression levels, less cell-to-cell infection, and brighter clinical prognoses.

In order to test the HIV/plague hypothesis, an attenuated, non-transmissible form of Yersinia pestis, the bacterial cause of plague, was tested on mice both with and without the CCR5 32 mutation. There was no difference in susceptibility between the two groups, says Mosier.

The possibility still exists, says Mosier, that the CCR5 32 mutation arose due to the influence of some other disease that was prevalent in the Middle Ages, such as smallpox. Mosier plans to address this possibility next.

The brief communication, "CCR5 mutation and protection against plague" was authored by Joan Mecsas, Greg Franklin,William A. Kuziel, Robert R. Brubaker, Stanley Falkow, and Donald E. Mosier and appears in the February 12, 2004 issue of the journal Nature.


This work was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>