Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps scientists say genetic mutation doesn’t protect against HIV and plague

12.02.2004


A group of scientists at The Scripps Research Institute have provided strong evidence that a popular hypothesis concerning the origins of a genetic mutation common among Caucasians of Northern European descent that protects against human immunodeficiency virus (HIV) is wrong.



The hypothesis suggests that the mutation conferred resistance against bubonic plague in the Middle Ages, much as it does against HIV today. This idea was based on the fact that the mutation first appeared around the same time that the "Black Death" plague epidemic killed a third of Europe’s population in the years 1346-1352. Since HIV was not present in Europe at this time, individuals with the mutation must have been protected against some other disease.

In a brief communication to be published this week in the journal Nature, Scripps Research Immunology Professor Donald Mosier and his colleagues show this hypothesis to be incorrect.


Mosier performed studies that demonstrate that the mutation does not protect against plague infection in mouse models and that it is unlikely to have offered any protection against the plague in humans during the Middle Ages.

An Important Receptor

The mutation in question is in the C-C chemokine receptor 5 gene, which makes the human receptor protein called CCR5. CCR5 is a seven trans-membrane spanning protein of 332 amino acids that inserts into the cell membranes of human CD4+ T helper cells. HIV particles use CCR5 to gain entry into CD4+ T cells.

The CCR5 32 mutation -- a deletion of 32 bases of DNA from the CCR5 gene -- was first identified in 1996 in individuals who seemed to be protected from infection with HIV despite having had multiple high-risk exposures to the virus.

The resistant individuals all had the 32-base pair mutation in their CCR5 genes, and that left them with CD4+ T cells with no CCR5 receptors, conferring resistance to HIV infection. Later data showed that individuals who were heterozygous for the mutation had lower CCR5 expression levels, less cell-to-cell infection, and brighter clinical prognoses.

In order to test the HIV/plague hypothesis, an attenuated, non-transmissible form of Yersinia pestis, the bacterial cause of plague, was tested on mice both with and without the CCR5 32 mutation. There was no difference in susceptibility between the two groups, says Mosier.

The possibility still exists, says Mosier, that the CCR5 32 mutation arose due to the influence of some other disease that was prevalent in the Middle Ages, such as smallpox. Mosier plans to address this possibility next.

The brief communication, "CCR5 mutation and protection against plague" was authored by Joan Mecsas, Greg Franklin,William A. Kuziel, Robert R. Brubaker, Stanley Falkow, and Donald E. Mosier and appears in the February 12, 2004 issue of the journal Nature.


This work was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>