Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique discovered at Stanford monitors cancer cell proliferation

11.02.2004


A team of cell biologists at the Stanford University School of Medicine has developed a new imaging technique using biosensors that precisely monitor the timing of cell division. Researchers tested the technique by observing and measuring the slowdown of cell division associated with an anti-cancer drug. They believe the discovery may allow them to screen for many more anti-cancer compounds in the future.



Tissues and organs form and grow through a highly regulated process of cell division known as mitosis. Normally, cells stop dividing once they start performing specialized functions. If the process is incorrectly regulated, however, cells divide too fast or too slowly. Accelerated cell division can result in cancers that proliferate rapidly unless anti-cancer agents intervene.

To measure cell division timing, the researchers incorporated fluorescent proteins, called biosensors, into the cell nuclei. When used with a specialized microscopy technique called total internal reflection fluorescence, the biosensor glows when the nuclear membrane breaks down, passes through the surrounding cellular material and is released into the cell membrane. When genetic material is re-enclosed in the nuclear envelope of newly formed cells, the biosensor moves back into the reformed nucleus and there is no fluorescence. The effect is like a light switch being turned on and off, signaling the start and end of the cell division process, respectively.


The biosensor is a first example of new types of probes designed to observe and measure cellular processes in real time rather than just looking at before-and-after static snapshots, said Tobias Meyer, PhD, associate professor of molecular pharmacology, who led the research team. "The biosensor will be useful for discovering genes involved in cell proliferation and cancer," he said.

The technique, published in the February issue of Nature Biotechnology, allows simultaneous monitoring of up to 100 cells. Previous methods allowed researchers to observe only a single cell at a time.

"The exciting thing is the ability to screen compound libraries to discover novel cancer therapies," said Joshua Jones, a graduate student in molecular pharmacology and lead author of the study. He added that the idea of screening hundreds of thousands of potential anti-cancer compounds was previously inconceivable when researchers had to rely on techniques that monitor only one cell at a time. The group is patenting the new imaging technology.

In one experiment testing this technique, the team used rat leukemia cells that contained biosensors. The cells were then exposed to a low dosage of the anti-cancer drug Taxol to observe how it affected cell division.

After being mounted onto the glass of a special microscope, cells were hit with laser light from below. The light was angled such that after it went through the lower side of the glass, the upper side reflected it downward instead of allowing it to pass through. The light did not therefore pass through the cells on top of the glass, but still supplied enough energy to illuminate the fluorescent biosensors in their plasma membranes, allowing the researchers to quantify the timing of cell division.

This biosensor also can be used with conventional microscopy techniques and, although the resolution is not as great as with total internal reflection microscopy, these experiments allowed the researchers to observe defects in cell function as well as the timing of cell division events.

In each experiment, the researchers captured microscope images every 2 minutes then assembled them in sequence as movies, marking the onset of the various stages of cell division.

The next phase of this research, which is funded by the National Institutes of Health, will examine the use of biosensors to screen for new genes that promote cell proliferation. The team is now developing ways to automate the cell-imaging process and the analysis of the massive body of data the technique generates. "It’s going to be tricky," said Jones. "We’re probably going to have to get a computer that thinks like we do."


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Rosanne Spector | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>