Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points in new direction for cancer clues

11.02.2004


Team shows tumors can be triggered in normal cells by signals from nearby supporting cells



Like a detective combing the scene of a crime for clues, researchers often target their search for cancer causes in the cells known as epithelial cells. After all, it is these cells that most often become cancerous, so it makes sense to look for what goes wrong inside these cells.

However, a new report from a team of Vanderbilt-Ingram Cancer Center scientists demonstrates that tumors can develop from completely normal epithelial cells solely because of changes in signals from nearby supporting cells.


Writing in the Feb. 6 issue of Science, the team reports the dramatic development of precancerous prostate lesions and invasive cancers in the forestomachs of mice bred to eliminate a particular cell signaling pathway only in fibroblasts. These fibroblasts are supporting cells adjacent to the epithelial cells.

"The key finding is that we were able to show that a signaling pathway in the fibroblasts is important and can have a dramatic effect on epithelial cells in these animals," said Dr. Harold L. Moses, Benjamin F. Byrd Professor of Oncology, director of the Vanderbilt-Ingram Cancer Center, and director of the Frances Williams Preston Laboratories of the T.J. Martell Foundation for Leukemia, Cancer and AIDS Research. The paper results from a collaboration between Moses’ lab and the lab led by Dr. Eric G. Neilson, Hugh J. Morgan Professor and Chair of Medicine.

The Moses lab focuses on the role of transforming growth factor beta and its ability to either stimulate or inhibit cell growth depending upon the conditions. A standard approach to studying a particular protein or signaling pathway is to develop a genetically engineered "knock-out" mouse that does not express the particular protein in question. But TGF beta and its receptor are so critical to mammalian development, mice bred to eliminate this signaling pathway in all cells die as embryos.

To eliminate the TGF-beta pathway in only certain cells, the Moses lab in collaboration with Dr. Mark Magnuson’s and Dr. Christopher V.E. Wright’s laboratories developed a mouse in which the TGF-beta receptor included recognition points for a gene called Cre and its protein product. In cells where Cre is expressed, the TGF-beta receptor is selectively turned off.

The Neilson lab focuses on fibroblasts and had recently reported the potential of fibroblast-specific-protein 1 (FSP1) as a marker for cancer metastasis. This lab had developed a mouse that, under influence by FSP1, selectively expressed Cre in fibroblasts alone.

By crossing the two strains of mice, a new strain of animal was developed that expressed Cre only in the fibroblasts and so, in turn, eliminated TGF-beta expression only in the fibroblasts. The other cells in the mice were completely normal.

"We had developed the FSP1.cre mouse because we wanted to study selective gene interruptions in fibroblasts," Neilson said. "About the time our lab finished breeding our mouse, Hal and I realized that we would have an interesting experiment by crossing the two. At the time we decided to do the experiment, we weren’t thinking the mice would develop cancer."

But that is exactly what happened. The mice consistently developed precancerous lesions in the prostate and invasive squamous cell cancer in the forestomach (an organ in the mouse similar to the human esophagus).

Upon additional analysis, the researchers noted in the mouse forestomachs an elevation of a receptor for hepatocyte growth factor (HGF), which is known to be regulated by TGF-beta.

The findings suggest that when the TGF-beta pathway is active in the fibroblasts, they provide signals that keep growth of the neighboring epithelial cells in check; when the pathway is interrupted, cell growth is allowed to proceed unchecked, a result that may be related to an increase in HGF activity. "The seminal observation from crossing these mice is that you don’t need to have mutations in the epithelial cells for a carcinoma to result," Neilson said.

Dr. Neil Bhowmick, assistant professor of Urologic Surgery, lead author on the paper and a former member of the Moses lab, agreed.

"This really suggests new causes of cancer and targets for intervention," Bhowmick said. "We were looking at TGF-beta because that’s what we study. But it’s likely that there are other molecules in the stroma (supporting cells) that are important, too, and this opens the door for that research."

Bhowmick, who recently joined the Vanderbilt faculty, said that the project was of particular interest to him because it allowed him to collaborate with many other departments in the medical center. "The partnership was critical because without the mouse from the Neilson lab, we could never have made these observations."


Other co-authors on the paper were Anna Chytil, and Agnieszka E. Gorska of the department of Cancer Biology; David Plieth and Nancy Dumont, of the department of Medicine; and Scott Shappell and Kay Washington of the department of Pathology.

The work was supported by the National Institutes of Health (National Cancer Institute), the U.S. Department of Defense, and the T.J. Martell Foundation for Leukemia, Cancer and AIDS Research.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>