Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points in new direction for cancer clues

11.02.2004


Team shows tumors can be triggered in normal cells by signals from nearby supporting cells



Like a detective combing the scene of a crime for clues, researchers often target their search for cancer causes in the cells known as epithelial cells. After all, it is these cells that most often become cancerous, so it makes sense to look for what goes wrong inside these cells.

However, a new report from a team of Vanderbilt-Ingram Cancer Center scientists demonstrates that tumors can develop from completely normal epithelial cells solely because of changes in signals from nearby supporting cells.


Writing in the Feb. 6 issue of Science, the team reports the dramatic development of precancerous prostate lesions and invasive cancers in the forestomachs of mice bred to eliminate a particular cell signaling pathway only in fibroblasts. These fibroblasts are supporting cells adjacent to the epithelial cells.

"The key finding is that we were able to show that a signaling pathway in the fibroblasts is important and can have a dramatic effect on epithelial cells in these animals," said Dr. Harold L. Moses, Benjamin F. Byrd Professor of Oncology, director of the Vanderbilt-Ingram Cancer Center, and director of the Frances Williams Preston Laboratories of the T.J. Martell Foundation for Leukemia, Cancer and AIDS Research. The paper results from a collaboration between Moses’ lab and the lab led by Dr. Eric G. Neilson, Hugh J. Morgan Professor and Chair of Medicine.

The Moses lab focuses on the role of transforming growth factor beta and its ability to either stimulate or inhibit cell growth depending upon the conditions. A standard approach to studying a particular protein or signaling pathway is to develop a genetically engineered "knock-out" mouse that does not express the particular protein in question. But TGF beta and its receptor are so critical to mammalian development, mice bred to eliminate this signaling pathway in all cells die as embryos.

To eliminate the TGF-beta pathway in only certain cells, the Moses lab in collaboration with Dr. Mark Magnuson’s and Dr. Christopher V.E. Wright’s laboratories developed a mouse in which the TGF-beta receptor included recognition points for a gene called Cre and its protein product. In cells where Cre is expressed, the TGF-beta receptor is selectively turned off.

The Neilson lab focuses on fibroblasts and had recently reported the potential of fibroblast-specific-protein 1 (FSP1) as a marker for cancer metastasis. This lab had developed a mouse that, under influence by FSP1, selectively expressed Cre in fibroblasts alone.

By crossing the two strains of mice, a new strain of animal was developed that expressed Cre only in the fibroblasts and so, in turn, eliminated TGF-beta expression only in the fibroblasts. The other cells in the mice were completely normal.

"We had developed the FSP1.cre mouse because we wanted to study selective gene interruptions in fibroblasts," Neilson said. "About the time our lab finished breeding our mouse, Hal and I realized that we would have an interesting experiment by crossing the two. At the time we decided to do the experiment, we weren’t thinking the mice would develop cancer."

But that is exactly what happened. The mice consistently developed precancerous lesions in the prostate and invasive squamous cell cancer in the forestomach (an organ in the mouse similar to the human esophagus).

Upon additional analysis, the researchers noted in the mouse forestomachs an elevation of a receptor for hepatocyte growth factor (HGF), which is known to be regulated by TGF-beta.

The findings suggest that when the TGF-beta pathway is active in the fibroblasts, they provide signals that keep growth of the neighboring epithelial cells in check; when the pathway is interrupted, cell growth is allowed to proceed unchecked, a result that may be related to an increase in HGF activity. "The seminal observation from crossing these mice is that you don’t need to have mutations in the epithelial cells for a carcinoma to result," Neilson said.

Dr. Neil Bhowmick, assistant professor of Urologic Surgery, lead author on the paper and a former member of the Moses lab, agreed.

"This really suggests new causes of cancer and targets for intervention," Bhowmick said. "We were looking at TGF-beta because that’s what we study. But it’s likely that there are other molecules in the stroma (supporting cells) that are important, too, and this opens the door for that research."

Bhowmick, who recently joined the Vanderbilt faculty, said that the project was of particular interest to him because it allowed him to collaborate with many other departments in the medical center. "The partnership was critical because without the mouse from the Neilson lab, we could never have made these observations."


Other co-authors on the paper were Anna Chytil, and Agnieszka E. Gorska of the department of Cancer Biology; David Plieth and Nancy Dumont, of the department of Medicine; and Scott Shappell and Kay Washington of the department of Pathology.

The work was supported by the National Institutes of Health (National Cancer Institute), the U.S. Department of Defense, and the T.J. Martell Foundation for Leukemia, Cancer and AIDS Research.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>