Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destructive wizardry of Ozz-E3 ligase appears key to building skeletal muscles in embryos and adults

11.02.2004


Finding mice suggests that abnormalities of this beta-catenin protein underlie certain muscle diseases in human



The organization and stability of growing muscles in both embryonic and adult mice depends on the ability of a protein called Ozz to direct the timely destruction of membrane-bound â-catenin, according to scientists at St. Jude Children’s Research Hospital. â-catenin is one of the key proteins that orchestrates this process. Ozz directs destruction of â-catenin by assembling an active ubiquitin ligase complex, Ozz-E3, which breaks down this pool of the protein in muscle cells.

Ozz-E3’s role is to attach a chain of ubiquitin molecules to â-catenin. This process, called ubiquitination, targets protein substrates for destruction and is essential to many cellular functions during development and adult life.


The researchers also discovered that the Ozz gene overlaps another gene, which codes for an enzyme called protective protein/cathepsin A or PPCA. This enzyme is a key player in a process that breaks down certain molecules in the cellular structure called the lysosome. The Ozz gene also shares with the PPCA gene a genetic "on switch," called a promoter, which controls the expression of either gene, depending on which direction the promoter acts, says Alessandra d’Azzo, Ph.D., a member of Genetics and Tumor Cell Biology at St. Jude. d’Azzo is senior author of a report on these findings that appears in the February issue of Developmental Cell.

"Our finding of the close link between PPCA and Ozz genes might explain why some children with severe neurodegenerative disease caused by mutation of PPCA also suffer from muscle disorders. We are now studying that possibility," d’Azzo said. The St. Jude team made their discoveries using muscle tissue from both normal and genetically modified mice.

The researchers showed that the delicate balance between accumulation and removal of â-catenin at a specific cellular site, the sarcolemma — the membrane covering each muscle fiber — is achieved by the activity of the Ozz-E3 ligase. "Modulating â-catenin levels at the sarcolemma is critical for the organization of sarcomeres, the basic building units of muscle fibers, and, in turn, for the remodeling and the regeneration of skeletal and cardiac muscle," d’Azzo said.

Sarcomeres are composed in large part of two different proteins, actin and myosin. The interaction of actin and myosin pulls the ends of the sarcomere toward each other in a miniature contraction. Thousands of sarcomeres lined up in a row make a myofibril; and large bundles of myofibrils make up a muscle fiber. Muscle fibers work together to form a single muscle, whose ability to contract is based on the accumulated contractions of the many thousands of sarcomeres making up each myofibril.

"For a muscle fiber to grow, there must be a constant rearrangement of myofibrils," d’Azzo said, "and that requires the dynamic removal and replacement of membrane-bound proteins, like â-catenin, that connect the myofibrils to the sarcolemma."

The St. Jude findings indicate that the loss of Ozz function disrupts the correct assembly of sarcomeres, which in turn disrupts muscle formation. Thus, the discovery of the Ozz function during muscle remodeling and growth might help uncover the genetic cause of certain muscle diseases that occur for unknown reason and that affect children in their growing years.

This work was supported in part by NIH, a Cancer Center support grant, Phillip and Elizabeth Gross and ALSAC. d’Azzo holds an endowed chair in Genetics and Gene Therapy from the Jewelers Charity Fund; and A. John Harris was supported by grants from the New Zealand Lottery Board and Foundation for Research Science and Technology.

Other authors of the paper include Tommaso Nastasi, Antonella Bongiovanni, Yvan Campos, Linda Mann, James N. Toy, Jake Bostrom, Robbert Rottier and Christopher Hahn (St. Jude); and Joan Weliky Conaway (Stowers Institute for Medical Research, Kansas City, MO).


St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, TN, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>