Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destructive wizardry of Ozz-E3 ligase appears key to building skeletal muscles in embryos and adults

11.02.2004


Finding mice suggests that abnormalities of this beta-catenin protein underlie certain muscle diseases in human



The organization and stability of growing muscles in both embryonic and adult mice depends on the ability of a protein called Ozz to direct the timely destruction of membrane-bound â-catenin, according to scientists at St. Jude Children’s Research Hospital. â-catenin is one of the key proteins that orchestrates this process. Ozz directs destruction of â-catenin by assembling an active ubiquitin ligase complex, Ozz-E3, which breaks down this pool of the protein in muscle cells.

Ozz-E3’s role is to attach a chain of ubiquitin molecules to â-catenin. This process, called ubiquitination, targets protein substrates for destruction and is essential to many cellular functions during development and adult life.


The researchers also discovered that the Ozz gene overlaps another gene, which codes for an enzyme called protective protein/cathepsin A or PPCA. This enzyme is a key player in a process that breaks down certain molecules in the cellular structure called the lysosome. The Ozz gene also shares with the PPCA gene a genetic "on switch," called a promoter, which controls the expression of either gene, depending on which direction the promoter acts, says Alessandra d’Azzo, Ph.D., a member of Genetics and Tumor Cell Biology at St. Jude. d’Azzo is senior author of a report on these findings that appears in the February issue of Developmental Cell.

"Our finding of the close link between PPCA and Ozz genes might explain why some children with severe neurodegenerative disease caused by mutation of PPCA also suffer from muscle disorders. We are now studying that possibility," d’Azzo said. The St. Jude team made their discoveries using muscle tissue from both normal and genetically modified mice.

The researchers showed that the delicate balance between accumulation and removal of â-catenin at a specific cellular site, the sarcolemma — the membrane covering each muscle fiber — is achieved by the activity of the Ozz-E3 ligase. "Modulating â-catenin levels at the sarcolemma is critical for the organization of sarcomeres, the basic building units of muscle fibers, and, in turn, for the remodeling and the regeneration of skeletal and cardiac muscle," d’Azzo said.

Sarcomeres are composed in large part of two different proteins, actin and myosin. The interaction of actin and myosin pulls the ends of the sarcomere toward each other in a miniature contraction. Thousands of sarcomeres lined up in a row make a myofibril; and large bundles of myofibrils make up a muscle fiber. Muscle fibers work together to form a single muscle, whose ability to contract is based on the accumulated contractions of the many thousands of sarcomeres making up each myofibril.

"For a muscle fiber to grow, there must be a constant rearrangement of myofibrils," d’Azzo said, "and that requires the dynamic removal and replacement of membrane-bound proteins, like â-catenin, that connect the myofibrils to the sarcolemma."

The St. Jude findings indicate that the loss of Ozz function disrupts the correct assembly of sarcomeres, which in turn disrupts muscle formation. Thus, the discovery of the Ozz function during muscle remodeling and growth might help uncover the genetic cause of certain muscle diseases that occur for unknown reason and that affect children in their growing years.

This work was supported in part by NIH, a Cancer Center support grant, Phillip and Elizabeth Gross and ALSAC. d’Azzo holds an endowed chair in Genetics and Gene Therapy from the Jewelers Charity Fund; and A. John Harris was supported by grants from the New Zealand Lottery Board and Foundation for Research Science and Technology.

Other authors of the paper include Tommaso Nastasi, Antonella Bongiovanni, Yvan Campos, Linda Mann, James N. Toy, Jake Bostrom, Robbert Rottier and Christopher Hahn (St. Jude); and Joan Weliky Conaway (Stowers Institute for Medical Research, Kansas City, MO).


St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, TN, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>