Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way To Predict The Spread Of Skin Cancer

10.02.2004


A new way of predicting whether skin cancers will spread to other organs is published this week in the British Journal of Cancer. This means that resources can be concentrated on those patients most in need of close follow up, and lead to earlier detection of the cancer spreading.

Malignant melanomas result in 1,600 deaths a year in the UK due to the spread of the disease to other parts of the body. By measuring the density of lymph vessels surrounding a melanoma, scientists at Bristol University working with doctors at Frenchay Hospital in Bristol, have been able to predict which tumours will spread.

Previously, the best way of predicting whether a melanoma was likely to spread was by measuring its thickness, since it was believed that the thicker a tumour was, the more likely it was to spread. But many thin melanomas spread and only 40% of thick ones do.



The team looked for, and found, a far more reliable method of prediction than thickness. They looked at the density of lymph vessels around melanomas stored at Frenchay Hospital and saw which patients actually went on to develop secondary cancers within 8 years. They used this information to develop a better prediction for the spread of the cancers.

Dr David Bates, scientific director of the Microvascular Research Laboratories at Bristol University said: ‘We shall now be looking at a larger study of many hundreds of patients. If our findings are confirmed it will mean that the likelihood of a patient developing cancer in other organs could be predicted ahead of time with reasonable certainty. Resources can then be concentrated on those patients most in need of close follow up, and hopefully lead to earlier detection of the spread of cancer.’

Cherry Lewis | alfa
Further information:
http://www.nature.com/cgi-taf/DynaPage.taf?file=/bjc/journal/v90/n3/full/6601571a.html
http://www.bris.ac.uk

More articles from Health and Medicine:

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>