Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shocking surprise: high voltage + rats = ozone, reopens power-line debate

10.02.2004


Rats subjected to extreme electromagnetic fields produce dangerous levels of the toxic gas ozone, according to a new study out of the Pacific Northwest National Laboratory that is sure to reenergize the decade-dormant debate about safety around power lines and household appliances.



It is the first experiment to conclusively link an electromagnetic field with a health-adverse chemical effect in the presence of an animal, said Steven Goheen, a scientist at the Department of Energy lab and lead author of a paper published in the current issue of the journal Bioelectromagnetics.

"All this time, we were looking in the wrong place," Goheen said. "We had been looking inside animals for an effect from the electromagnetic fields. Now it appears that the danger is in the air surrounding animals that are near a large electromagnetic field."


Electromagnetic fields are present in devices that use or carry electricity. Goheen and colleagues report that the ozone was produced when rats were present during a "corona discharge," an uncommon phenomenon in which electrons escape from a sharp surface of an electrical conductor at high voltage.

The researchers placed rats in a Plexiglas cage hooked up to a device that produced 10 kilovolts, or roughly the power of air ionizers marketed as health aids. In an empty cage, the ozone level peaked at 22 parts per billion with or without a corona discharge. When the animals were present and a centimeter from the corona source – an electrode inserted through the top of the cage – ozone levels were high, more than 200 parts per billion, or double the amount considered toxic at chronic exposure in human beings. The ozone was flushed from the cage quickly for measurements, and the rats were unharmed.

The electric field used in the rat experiments is greater than that of a casual passer-by near any high voltage power line, Goheen said, the distance being the key consideration. "Distance was one variable we measured in the rats. When they were more than about 5 centimeters away from the source, we didn’t see much effect."

This effect should be of concern only to those working much closer to power lines such as linemen or anyone else who spends many hours a day close to high voltage devices. Goheen is quick to note that such workers have more immediate concerns than whiffing a little ozone – such as electrocution and falling.

But he notes that if ozone is produced, it is possible that other so-called reactive species may be produced near human beings in the presence of high voltage and that "these results raise new questions about the relationships between electric fields and adverse biological effects."

Among the questions Goheen and colleagues are now wrestling with is what, precisely, happens to convert ambient air surrounding an animal’s electrified surfaces into its chemical cousin ozone.

In an earlier experiment, Goheen measured similar amounts of ozone in grounded water under a corona source, invoking by way of explanation something called "the Taylor cones phenomenon." A liquid surface at high field strength is unstable, with spots of slightly-higher surface charge that protrude from the surface. The tips can elongate and grow so sharp that droplets and even electrons can be ejected.

Since most mammals are mostly water and produce surface moisture in sweat glands, saliva and eyes, perhaps here is a connection. Goheen and his co-authors suggest that along with the exposed moist places, "pointed rat whiskers and hairs, as well as ears, nose, and tails, at sufficiently high field strength" contribute somehow to the discharge.

PNNL is a DOE Office of Science research center that advances the fundamental understanding of complex systems and provides science-based solutions in national security, energy, chemistry, the biological sciences and environmental quality. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-02.htm

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>