Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shocking surprise: high voltage + rats = ozone, reopens power-line debate

10.02.2004


Rats subjected to extreme electromagnetic fields produce dangerous levels of the toxic gas ozone, according to a new study out of the Pacific Northwest National Laboratory that is sure to reenergize the decade-dormant debate about safety around power lines and household appliances.



It is the first experiment to conclusively link an electromagnetic field with a health-adverse chemical effect in the presence of an animal, said Steven Goheen, a scientist at the Department of Energy lab and lead author of a paper published in the current issue of the journal Bioelectromagnetics.

"All this time, we were looking in the wrong place," Goheen said. "We had been looking inside animals for an effect from the electromagnetic fields. Now it appears that the danger is in the air surrounding animals that are near a large electromagnetic field."


Electromagnetic fields are present in devices that use or carry electricity. Goheen and colleagues report that the ozone was produced when rats were present during a "corona discharge," an uncommon phenomenon in which electrons escape from a sharp surface of an electrical conductor at high voltage.

The researchers placed rats in a Plexiglas cage hooked up to a device that produced 10 kilovolts, or roughly the power of air ionizers marketed as health aids. In an empty cage, the ozone level peaked at 22 parts per billion with or without a corona discharge. When the animals were present and a centimeter from the corona source – an electrode inserted through the top of the cage – ozone levels were high, more than 200 parts per billion, or double the amount considered toxic at chronic exposure in human beings. The ozone was flushed from the cage quickly for measurements, and the rats were unharmed.

The electric field used in the rat experiments is greater than that of a casual passer-by near any high voltage power line, Goheen said, the distance being the key consideration. "Distance was one variable we measured in the rats. When they were more than about 5 centimeters away from the source, we didn’t see much effect."

This effect should be of concern only to those working much closer to power lines such as linemen or anyone else who spends many hours a day close to high voltage devices. Goheen is quick to note that such workers have more immediate concerns than whiffing a little ozone – such as electrocution and falling.

But he notes that if ozone is produced, it is possible that other so-called reactive species may be produced near human beings in the presence of high voltage and that "these results raise new questions about the relationships between electric fields and adverse biological effects."

Among the questions Goheen and colleagues are now wrestling with is what, precisely, happens to convert ambient air surrounding an animal’s electrified surfaces into its chemical cousin ozone.

In an earlier experiment, Goheen measured similar amounts of ozone in grounded water under a corona source, invoking by way of explanation something called "the Taylor cones phenomenon." A liquid surface at high field strength is unstable, with spots of slightly-higher surface charge that protrude from the surface. The tips can elongate and grow so sharp that droplets and even electrons can be ejected.

Since most mammals are mostly water and produce surface moisture in sweat glands, saliva and eyes, perhaps here is a connection. Goheen and his co-authors suggest that along with the exposed moist places, "pointed rat whiskers and hairs, as well as ears, nose, and tails, at sufficiently high field strength" contribute somehow to the discharge.

PNNL is a DOE Office of Science research center that advances the fundamental understanding of complex systems and provides science-based solutions in national security, energy, chemistry, the biological sciences and environmental quality. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-02.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>