Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increase in the reliability of brain tumour diagnosis

09.02.2004


A team of European researchers lead by Carles Arús, professor at the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, have developed a system that facilitates the interpretation of magnetic resonance spectra of brain tumours and improves their diagnosis. It is a computer-based tool that visually classifies the different types of tumours. The new system has significantly improved the reliability of the diagnosis in preliminary tests with 16 patients.



There are 50 different types and grades of malignant tumours. The malignancy of each type of tumour is what determines if and what type of therapy is the best one to carry out. Radiologists use images of the brain, obtained by different exploratory techniques, to diagnose the type of tumour as well as using magnetic resonance (MR) spectra of the tumour. These spectra are curves with different patterns, which are associated with the abundance of the different chemical substances in its composition. Explorations with images obtained from MR have an average reliability for diagnosing a type of tumour of between 75 and 80%. The only alternative currently available to increase this reliability is the biopsy with the consequent risks that are involved with that type of intervention.

Carles Arús, professor at the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, lead a team of researchers from various European institutions in carrying out the European project called, INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance). The scientists have developed a computer-based system that classifies on the screen, in a visual manner, different types of tumours according to their magnetic resonance spectra. The system is very flexible with the origin and technical characteristics of the spectra, which makes it quite useful in cases in which the MR spectra were obtained from different apparatus or from different clinics.


Thanks to this new system, radiologists, who are accustomed to making diagnoses based on images of the brain, do not have to have specific abilities in interpreting MR spectra to improve their diagnoses. This decision support tool is based on a database that includes information on 300 brain tumours. Each one was validated by following quality control protocols established over the course of the study. A point on a graph represents each case. Its position is determined by the characteristics of the MR spectrum in such a way that tumours with a similar origin appear represented on the graph in nearby positions. When a doctor receives the spectrum corresponding to a patient with a tumour of unknown origin, the computer system locates it on the graph taking into account its distinctive characteristics. In this way, the radiologist obtains visual information on the probability that the unknown tumour is either one type or another according to the area of the graph on which it is found.

The system has been successfully tested in a preliminary study on 16 patients. In that study, the combination of information that the new system offered from the images of tumours obtained from brain explorations made it possible to achieve a 92% degree of reliability in diagnoses. That means a 4% increase in the reliability obtained with the images of just that specific group of patients.

The system has been ceded for commercialisation to the SCITO S.A. company. In addition to the participation of the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, the following groups and institutes have participated in the research carried out: l’Institut de Diagnòstic per la Imatge and the Centre Diagnòstic in Pedralbes (Barcelona), St. George’s Hospital Medical School and the University of Sussex (UK), l’INSERM/Université Joseph Fourier in Grenoble, the French company PRAXIM SARL, the Katholieke Universiteit Nijmegen (Holland) and the German company Siemens AG.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>