Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increase in the reliability of brain tumour diagnosis

09.02.2004


A team of European researchers lead by Carles Arús, professor at the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, have developed a system that facilitates the interpretation of magnetic resonance spectra of brain tumours and improves their diagnosis. It is a computer-based tool that visually classifies the different types of tumours. The new system has significantly improved the reliability of the diagnosis in preliminary tests with 16 patients.



There are 50 different types and grades of malignant tumours. The malignancy of each type of tumour is what determines if and what type of therapy is the best one to carry out. Radiologists use images of the brain, obtained by different exploratory techniques, to diagnose the type of tumour as well as using magnetic resonance (MR) spectra of the tumour. These spectra are curves with different patterns, which are associated with the abundance of the different chemical substances in its composition. Explorations with images obtained from MR have an average reliability for diagnosing a type of tumour of between 75 and 80%. The only alternative currently available to increase this reliability is the biopsy with the consequent risks that are involved with that type of intervention.

Carles Arús, professor at the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, lead a team of researchers from various European institutions in carrying out the European project called, INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance). The scientists have developed a computer-based system that classifies on the screen, in a visual manner, different types of tumours according to their magnetic resonance spectra. The system is very flexible with the origin and technical characteristics of the spectra, which makes it quite useful in cases in which the MR spectra were obtained from different apparatus or from different clinics.


Thanks to this new system, radiologists, who are accustomed to making diagnoses based on images of the brain, do not have to have specific abilities in interpreting MR spectra to improve their diagnoses. This decision support tool is based on a database that includes information on 300 brain tumours. Each one was validated by following quality control protocols established over the course of the study. A point on a graph represents each case. Its position is determined by the characteristics of the MR spectrum in such a way that tumours with a similar origin appear represented on the graph in nearby positions. When a doctor receives the spectrum corresponding to a patient with a tumour of unknown origin, the computer system locates it on the graph taking into account its distinctive characteristics. In this way, the radiologist obtains visual information on the probability that the unknown tumour is either one type or another according to the area of the graph on which it is found.

The system has been successfully tested in a preliminary study on 16 patients. In that study, the combination of information that the new system offered from the images of tumours obtained from brain explorations made it possible to achieve a 92% degree of reliability in diagnoses. That means a 4% increase in the reliability obtained with the images of just that specific group of patients.

The system has been ceded for commercialisation to the SCITO S.A. company. In addition to the participation of the Department of Biochemistry and Molecular Biology of the Universitat Autònoma de Barcelona, the following groups and institutes have participated in the research carried out: l’Institut de Diagnòstic per la Imatge and the Centre Diagnòstic in Pedralbes (Barcelona), St. George’s Hospital Medical School and the University of Sussex (UK), l’INSERM/Université Joseph Fourier in Grenoble, the French company PRAXIM SARL, the Katholieke Universiteit Nijmegen (Holland) and the German company Siemens AG.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>