Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood-diverting catheter holds promise for stroke treatment

06.02.2004


American Stroke Association meeting report



A new catheter device that diverts some blood from the lower body to the brain appears safe for treating acute stroke and may significantly reduce stroke complications – even after a critical treatment window has lapsed.

The results of this experimental study were reported today at the American Stroke Association’s 29th International Stroke Conference.


"The device treats stroke by a unique approach that increases blood flow to the brain," said lead author Morgan S. Campbell III, M.D., director of interventional neurology at the Alabama Neurological Institute, in Birmingham. "Ten of the 15 patients who were conscious when they arrived at the hospital improved during the procedure, which is very impressive."

Campbell and his colleagues tested the safety and effectiveness of the device, called NeuroFlo, on patients who suffered ischemic strokes. Ischemic strokes occur when a blood clot blocks an artery, reducing blood flow and oxygen to part of the brain. Using two balloons attached to a catheter, NeuroFlo diverts some blood from the lower extremities and sends it to the upper body.

Not all the brain cells affected by an ischemic stroke die immediately, Campbell said. A large number of cells in the stroke area initially have the potential to recover if their blood supply is restored. In theory, increasing the volume of blood to these damaged brain cells should preserve some of them even more than three hours after a stroke onset.

Ischemic stroke patients who arrive within three hours of symptom onset can often be treated with clot-busting drugs. However, these clot busters are not recommended for use more than three hours after stroke onset.

"The blood volume theory has been studied before but no one had really shown that it actually works and makes a difference," Campbell said. "So it is very encouraging that the device can divert more oxygenated blood to the brain and that patients get better."

Campbell conducted the study while he was an assistant professor of neurology and radiology at The University of Texas Health Science Center at Houston. He and colleagues at eight medical centers in the United States, Turkey, Germany and Argentina studied 17 patients whose strokes had been in progress for three to 12 hours. The average time between stroke onset and the beginning of treatment was 7.5 hours.

Each patient had a NeuroFlo device inserted into an artery in the groin. The device was then threaded up to the abdominal aorta and positioned with collapsed balloons above and below the renal arteries. The balloons were then inflated to partially obstruct the aorta. The device was left in place for one hour.

"By blowing up these balloons and limiting the blood flow to the lower extremities, we shifted more of the blood flow up to the head," Campbell explained.

This greater volume of blood increased collateral flow, the flow of blood through smaller vessels in the brain. The collateral flow by-passed the blocked section of the artery that was causing the patient’s stroke, and brought needed oxygen to the cells downstream from the blockage.

The study’s primary intent was to test the device’s safety. Although two study participants died, their deaths were attributed to their strokes and not adverse effects of the device. Nor did people treated with the device suffer damage to their kidneys, heart or blood vessels.

The research team also evaluated the patients’ treatment response.

Twelve of 16 patients monitored with ultrasound had a 15 percent increase or more of their cerebral blood flow velocity, with an average boost of 25 percent. Ultrasound waves passing into the skull can measure blood flow velocity. Velocity is an indirect measure of blood flow volume.

The blood pressure in the arteries increased an average of only 6 percent overall and did not increase in five patients. "This shows the increased blood flow did not simply result from an increase in blood pressure but from an increase in blood volume," Campbell said. "This is the desired effect of the device."

The researchers also assessed the degree of deficit of the stroke patients. While undergoing their hour-long treatment, 10 of the 15 conscious patients (67 percent) showed significantly higher scores on the National Institutes of Health Stroke Scale, the most commonly used assessment tool in acute stroke. Thirty days after treatment, six of the 15 survivors had "good" physical function, on the modified Rankin scale, which rates disability.

The second phase of the study has begun enrollment. CoAxia, Inc., the device’s maker, will seek approval from the U.S. Food and Drug Administration to conduct a larger clinical trial.


Co-authors are James C. Grotta, M.D.; Camilo R. Gomez, M.D.; and Gazi Ozdemir, M.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>