Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool brain opens stroke treatment window, say Stanford researchers

06.02.2004


Treating stroke is all a matter of timing: therapy delivered too late misses the critical window when neurons can still be saved. A report by Stanford University School of Medicine researchers shows that cooling the brain can lengthen the therapeutic window, giving doctors more time to protect brain cells.



The idea of cooling the brain isn’t new. Study leader Gary Steinberg, MD, PhD, the Lacroute-Hearst Professor of Neurosurgery and the Neurosciences, said he started cooling brains during brain surgery in 1991. For some types of surgeries, a brain that’s 4 degrees cooler than normal seems to resist injury better than a brain at normal body temperature.

In collaboration with Robert Sapolsky, PhD, the John A. and Cynthia Fry Gunn Professor of Biological Sciences, Steinberg has combined this cooling treatment with a form of gene therapy. Together the approaches work better than either technique on its own to save neurons after a stroke. What’s more, cooling the brains in rats slowed the neurons’ demise, giving researchers more time to administer additional treatment.


"We think this work has considerable potential," Steinberg said. The study is published in the February issue of the journal Stroke.

In past experiments, Steinberg’s and Sapolsky’s groups have shown that giving rats a form of gene therapy within 90 minutes after a stroke can help brain cells survive. The gene they insert, called Bcl-2, prevents cells from following a ritualized form of cell death. Proteins involved in this fatal pathway usually skyrocket after a stroke and brain cells die en masse.

Although the gene therapy’s success was good news, giving Bcl-2 after the initial 90-minute window had no effect - the cell-death proteins had already been released and the cells were beyond recovery. However, Steinberg said it is rare for stroke patients to receive treatment within that narrow 90-minute time frame.

Steinberg and his colleagues thought that chilling the brains might slow the release of cell-death molecules, allowing a longer window in which Bcl-2 treatment could be effective.

In the study, researchers cut off the blood supply to a portion of the brain in rats, simulating a stroke. Some rats recovered at the normal body temperature while others had their temperature lowered by 4 degrees until the researchers gave Bcl-2 gene therapy five hours later.

The number of surviving neurons was the same in all mice that had no gene therapy and in mice that had gene therapy without cooling. However, the mice in which the lowered body temperature was followed by gene therapy had two to three times more neurons surviving two days after the stroke.

Steinberg said if this finding holds true in humans then chilling the brain may give doctors more time to treat stroke patients. This longer opening could make the difference in enabling patients to retain such functions as control of their limbs or the ability to speak normally after a stroke.

Steinberg added that for now, Bcl-2 gene therapy isn’t an option for humans because the method used to insert the gene hasn’t been perfected. Rather, he said researchers can begin looking at other treatments that may be possible to complete within the longer therapeutic window. These treatments include one of a wide range of proteins that, like Bcl-2, thwart the cell-suicide pathway and keep cells alive.

"We’re also pursuing hypothermia with other genes to extend the therapeutic window," Steinberg said.

Heng Zhao, PhD, research associate, was lead author of the study. Midori Yenari, MD, associate professor of neurosurgery and of neurology and neurological sciences, also contributed to the work.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>