Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool brain opens stroke treatment window, say Stanford researchers

06.02.2004


Treating stroke is all a matter of timing: therapy delivered too late misses the critical window when neurons can still be saved. A report by Stanford University School of Medicine researchers shows that cooling the brain can lengthen the therapeutic window, giving doctors more time to protect brain cells.



The idea of cooling the brain isn’t new. Study leader Gary Steinberg, MD, PhD, the Lacroute-Hearst Professor of Neurosurgery and the Neurosciences, said he started cooling brains during brain surgery in 1991. For some types of surgeries, a brain that’s 4 degrees cooler than normal seems to resist injury better than a brain at normal body temperature.

In collaboration with Robert Sapolsky, PhD, the John A. and Cynthia Fry Gunn Professor of Biological Sciences, Steinberg has combined this cooling treatment with a form of gene therapy. Together the approaches work better than either technique on its own to save neurons after a stroke. What’s more, cooling the brains in rats slowed the neurons’ demise, giving researchers more time to administer additional treatment.


"We think this work has considerable potential," Steinberg said. The study is published in the February issue of the journal Stroke.

In past experiments, Steinberg’s and Sapolsky’s groups have shown that giving rats a form of gene therapy within 90 minutes after a stroke can help brain cells survive. The gene they insert, called Bcl-2, prevents cells from following a ritualized form of cell death. Proteins involved in this fatal pathway usually skyrocket after a stroke and brain cells die en masse.

Although the gene therapy’s success was good news, giving Bcl-2 after the initial 90-minute window had no effect - the cell-death proteins had already been released and the cells were beyond recovery. However, Steinberg said it is rare for stroke patients to receive treatment within that narrow 90-minute time frame.

Steinberg and his colleagues thought that chilling the brains might slow the release of cell-death molecules, allowing a longer window in which Bcl-2 treatment could be effective.

In the study, researchers cut off the blood supply to a portion of the brain in rats, simulating a stroke. Some rats recovered at the normal body temperature while others had their temperature lowered by 4 degrees until the researchers gave Bcl-2 gene therapy five hours later.

The number of surviving neurons was the same in all mice that had no gene therapy and in mice that had gene therapy without cooling. However, the mice in which the lowered body temperature was followed by gene therapy had two to three times more neurons surviving two days after the stroke.

Steinberg said if this finding holds true in humans then chilling the brain may give doctors more time to treat stroke patients. This longer opening could make the difference in enabling patients to retain such functions as control of their limbs or the ability to speak normally after a stroke.

Steinberg added that for now, Bcl-2 gene therapy isn’t an option for humans because the method used to insert the gene hasn’t been perfected. Rather, he said researchers can begin looking at other treatments that may be possible to complete within the longer therapeutic window. These treatments include one of a wide range of proteins that, like Bcl-2, thwart the cell-suicide pathway and keep cells alive.

"We’re also pursuing hypothermia with other genes to extend the therapeutic window," Steinberg said.

Heng Zhao, PhD, research associate, was lead author of the study. Midori Yenari, MD, associate professor of neurosurgery and of neurology and neurological sciences, also contributed to the work.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>