Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool brain opens stroke treatment window, say Stanford researchers

06.02.2004


Treating stroke is all a matter of timing: therapy delivered too late misses the critical window when neurons can still be saved. A report by Stanford University School of Medicine researchers shows that cooling the brain can lengthen the therapeutic window, giving doctors more time to protect brain cells.



The idea of cooling the brain isn’t new. Study leader Gary Steinberg, MD, PhD, the Lacroute-Hearst Professor of Neurosurgery and the Neurosciences, said he started cooling brains during brain surgery in 1991. For some types of surgeries, a brain that’s 4 degrees cooler than normal seems to resist injury better than a brain at normal body temperature.

In collaboration with Robert Sapolsky, PhD, the John A. and Cynthia Fry Gunn Professor of Biological Sciences, Steinberg has combined this cooling treatment with a form of gene therapy. Together the approaches work better than either technique on its own to save neurons after a stroke. What’s more, cooling the brains in rats slowed the neurons’ demise, giving researchers more time to administer additional treatment.


"We think this work has considerable potential," Steinberg said. The study is published in the February issue of the journal Stroke.

In past experiments, Steinberg’s and Sapolsky’s groups have shown that giving rats a form of gene therapy within 90 minutes after a stroke can help brain cells survive. The gene they insert, called Bcl-2, prevents cells from following a ritualized form of cell death. Proteins involved in this fatal pathway usually skyrocket after a stroke and brain cells die en masse.

Although the gene therapy’s success was good news, giving Bcl-2 after the initial 90-minute window had no effect - the cell-death proteins had already been released and the cells were beyond recovery. However, Steinberg said it is rare for stroke patients to receive treatment within that narrow 90-minute time frame.

Steinberg and his colleagues thought that chilling the brains might slow the release of cell-death molecules, allowing a longer window in which Bcl-2 treatment could be effective.

In the study, researchers cut off the blood supply to a portion of the brain in rats, simulating a stroke. Some rats recovered at the normal body temperature while others had their temperature lowered by 4 degrees until the researchers gave Bcl-2 gene therapy five hours later.

The number of surviving neurons was the same in all mice that had no gene therapy and in mice that had gene therapy without cooling. However, the mice in which the lowered body temperature was followed by gene therapy had two to three times more neurons surviving two days after the stroke.

Steinberg said if this finding holds true in humans then chilling the brain may give doctors more time to treat stroke patients. This longer opening could make the difference in enabling patients to retain such functions as control of their limbs or the ability to speak normally after a stroke.

Steinberg added that for now, Bcl-2 gene therapy isn’t an option for humans because the method used to insert the gene hasn’t been perfected. Rather, he said researchers can begin looking at other treatments that may be possible to complete within the longer therapeutic window. These treatments include one of a wide range of proteins that, like Bcl-2, thwart the cell-suicide pathway and keep cells alive.

"We’re also pursuing hypothermia with other genes to extend the therapeutic window," Steinberg said.

Heng Zhao, PhD, research associate, was lead author of the study. Midori Yenari, MD, associate professor of neurosurgery and of neurology and neurological sciences, also contributed to the work.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>