Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy technique could aid islet transplants for diabetes, says Pittsburgh study

05.02.2004


Researchers also find current immunosuppression drug therapy may be harmful for transplanted Islets



Treating pancreatic islet cells with a growth factor can dramatically reduce the number of these cells needed for transplants to reverse Type 1 diabetes, according to a study by University of Pittsburgh School of Medicine researchers. In the animal model study, researchers also found that the triple-drug immunosuppression therapy currently used after human islet cell transplants is harmful to transplanted rat pancreatic islets and can actually induce diabetes in rats.

"This study suggests that the current immunosuppression regimen might be further optimized or changed and has potential implications for further improving islet transplant outcomes in humans with Type 1 diabetes," said senior author Andrew Stewart, M.D., chief of the division of endocrinology and metabolism and professor of medicine at the University of Pittsburgh School of Medicine.


The research is published in the February 2004 issue of the journal Endocrinology and on line at http://endo.endojournals.org/.

"On the positive side, by using a rat model that closely mimics events occurring in human islet transplant recipients, we found that introducing a growth factor DNA to pancreatic islet beta cells (the cells that produce insulin) before transplantation induces cell division and greatly enhances the cells’ function and survival," said Dr. Stewart. "That is good news for the 1.6 million people with Type 1 diabetes because the procedure may help surmount difficulties currently posed by the limited availability of human pancreatic islet cells.

"The disappointing news is that we also discovered, much to our surprise, that the three immunosuppressive drugs commonly prescribed for patients after islet cell transplantation induced marked insulin resistance and beta cell toxicity in the models used in our studies, actually inducing diabetes and reducing the function of their new islet cells. This was true even though the doses and the blood levels of the drugs were low and comparable to those used in humans."

In the study, the researchers used a common virus called an adenovirus to deliver hepatocyte growth factor (HGF), which induces beta cell division and prolongs beta cell survival, into pancreatic islets that had been extracted from rat pancreases. Having conducted similar previous research on genetically immunodeficient mice, researchers this time sought to construct a situation that most closely mimics a human islet cell transplant according to the Edmonton protocol. They used an allogenic islet transplant system, using islets from Lewis rats and transplanting them into Sprague Dawley rats (this is similar to transplanting islets from one human donor into a different recipient). They also delivered the islets into the portal vein (as is performed in humans) instead of through a kidney capsule graft (used in their prior studies in mice). Finally, researchers used the standard combination of immunosuppressive drugs – tacrolimus, sirolimus and daclizumab.

After one day, and lasting three weeks, the blood glucose control was far superior in the HGF-treated rats than the controls. Also, the number of islets surviving in the liver in rats that had been transplanted with HGF-treated islets was double that seen with controls, whose transplanted islets had been treated with a control adenovirus. These studies confirmed prior studies from the Pittsburgh group demonstrating the efficacy of HGF in enhancing islet transplant outcomes.

The experiment was then repeated, going beyond three weeks to see if the improvements would be long lasting. As had been observed previously, but this time for 18 weeks, rats whose islets had been pre-treated with HGF maintained blood glucose levels 200 mg/dl lower than the control animals. Since rats live for approximately two years, this could equate to a decade or more in a human.

Surprisingly, however, in control studies, completely normal rats treated with the triple-drug regimen developed markedly increased blood glucose levels, reaching 250 mg/dl in only ten days. In addition, the blood insulin levels increased by three-fold, indicating that these normal rats had become insulin resistant as a result of the triple drug treatment. (Insulin resistance is the cause of Type 2 diabetes, commonly encountered in adults.) In the second, longer study, the control rats all remained diabetic throughout the study and died by week 18 with blood glucose levels in the 400 mg/dl range.

"We have demonstrated that using gene therapy strategies to deliver a growth factor, in this case HGF, to islet cells can improve the efficacy of portal pancreatic islet transplants over the long term using a model of juvenile, or Type 1, diabetes," said Dr. Stewart. "However, the fact that even the non-diabetic, non-transplanted control rats developed severe diabetes with the standard immunosuppressive drug therapy used following human islet cell transplants makes me wonder whether the same might not be occurring in humans, thereby increasing the number of islets needed for successful transplant outcomes and ultimately causing failure of islet grafts. These issues now need to be studied in humans."

"In brief, in my view, the Edmonton protocol for the transplantation of islets is a modern miracle. Our work suggests further optimism: there still may be room for further improvement," Dr. Stewart concluded.

The Edmonton Protocol to treat Type 1 diabetes was developed by researchers at the University of Alberta in Edmonton, Canada. Doctors use ultrasound to guide placement of a small catheter through the upper abdomen and into the liver. Pancreatic islet cells are then injected through the catheter into the liver. In time, islets are established in the liver and begin releasing insulin.


This work was supported by a research grant from the Juvenile Diabetes Research Foundation. The research team was composed of Juan Carlos Lopez-Talavera, M.D., currently at Roche Pharmaceuticals in Nutley, N.J., Adolfo Garcia-Ocana, Ph.D., assistant professor at the University of Pittsburgh School of Medicine, and Irene Cozar Castellano, Ph.D., postdoctoral fellow at the university, and was supported by Karen Takane, Ph.D., research associate at the university and Mr. Ian Sipula, BS, laboratory technician.

CONTACT:
Frank Raczkiewicz
Alan Aldinger
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
RaczkiewiczFA@upmc.edu
AldiAL@upmc.edu

Frank Raczkiewicz | EurekAlert!
Further information:
http://www.upmc.edu/
http://endo.endojournals.org/

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>