Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists use fractals to help Parkinson’s sufferers

02.02.2004


A new portable system for analyzing the walking patterns of people with Parkinson’s disease has been developed by researchers in the US and Japan. The system, described in the Institute of Physics publication Journal of Neural Engineering, will help doctors monitor the progress of the disease in patients and so tailor their therapy and drug regime more accurately than previously possible.



Parkinson’s disease is a progressive disorder of the central nervous system. Its symptoms include: uncontrollable trembling, difficulty walking, and postural problems that often lead to falls. These symptoms are usually controlled with dopamine agonist drugs. However, these can have a number of side-effects, such as jerking movements. It is also known that the body builds up a tolerance to the drug.

Understanding the nature and severity of symptoms for individual patients, which is reflected in their walking pattern, could help doctors improve a patient’s quality of life, by guiding their treatment more effectively, and so reduce side-effects.


Researchers have previously tried to quantify the problems suffered by Parkinson’s patients by studying their gait. Now, Masaki Sekine, Metin Akay, and Toshiyo Tamura, of the Department of Gerontechnology, National Institute for Longevity Sciences, in Aichi, Japan and Thayer School of Engineering, New Hampshire USA, working with their colleagues at the Fujimoto Hayasuzu Hospital, in Miy azaki, Japan, have devised a portable system based on a sensor placed on the patient’s body that measures movements in three dimensions. The readings from this sensor, known as a tri-axial accelerometer, are fed to a computer, together with measurements of the patients walking speed, and analysed using a fractal system.

Fractals are usually associated with irregular geometric objects that look the same no matter what scale they are viewed at: clouds, branching trees, rugged coastlines, rocky mountains, are all examples of fractals. The idea of a fractal can also be applied to irregular motion. For instance, a healthy heartbeat is now known not be so regular as we might think and follows a fractal pattern of movement instead. Scientists have suggested that fractals might also be used to model the irregular walking pattern of people with Parkinson’s disease.

The researchers used the fractal analysis to break down the body motion of healthy elderly subjects and patients with Parkinson’s disease into simpler component parts. The aim being to reveal the differences in irregularity and complexity of the way individuals in each group walk. The computer analysis of the data revealed the complexity, as determined by a fractal measure, of the walking patterns of each group. The fractal measure falls between 1 and 2, and the higher the fractal measure (close to 2) the more complex the body motion, or the lower the fractal measure (close to 1) the less complex the body motion.

The authors say that the fractal measure for Parkinson’s disease patients is about 1.48, or higher than that of healthy elderly subjects, whereas the healthy elderly subjects have a fractal measure nearer 1.3.

This confirms the fractal nature of the gait in Parkinson’s patients, says the team, and provides them with a quantitative means to measure the severity of walking symptoms.

The Journal of Neural Engineering was launched by the Institute of Physics this week and can be viewed online at: http://jne.iop.org.

David Reid | EurekAlert!
Further information:
http://jne.iop.org

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>