Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists use fractals to help Parkinson’s sufferers


A new portable system for analyzing the walking patterns of people with Parkinson’s disease has been developed by researchers in the US and Japan. The system, described in the Institute of Physics publication Journal of Neural Engineering, will help doctors monitor the progress of the disease in patients and so tailor their therapy and drug regime more accurately than previously possible.

Parkinson’s disease is a progressive disorder of the central nervous system. Its symptoms include: uncontrollable trembling, difficulty walking, and postural problems that often lead to falls. These symptoms are usually controlled with dopamine agonist drugs. However, these can have a number of side-effects, such as jerking movements. It is also known that the body builds up a tolerance to the drug.

Understanding the nature and severity of symptoms for individual patients, which is reflected in their walking pattern, could help doctors improve a patient’s quality of life, by guiding their treatment more effectively, and so reduce side-effects.

Researchers have previously tried to quantify the problems suffered by Parkinson’s patients by studying their gait. Now, Masaki Sekine, Metin Akay, and Toshiyo Tamura, of the Department of Gerontechnology, National Institute for Longevity Sciences, in Aichi, Japan and Thayer School of Engineering, New Hampshire USA, working with their colleagues at the Fujimoto Hayasuzu Hospital, in Miy azaki, Japan, have devised a portable system based on a sensor placed on the patient’s body that measures movements in three dimensions. The readings from this sensor, known as a tri-axial accelerometer, are fed to a computer, together with measurements of the patients walking speed, and analysed using a fractal system.

Fractals are usually associated with irregular geometric objects that look the same no matter what scale they are viewed at: clouds, branching trees, rugged coastlines, rocky mountains, are all examples of fractals. The idea of a fractal can also be applied to irregular motion. For instance, a healthy heartbeat is now known not be so regular as we might think and follows a fractal pattern of movement instead. Scientists have suggested that fractals might also be used to model the irregular walking pattern of people with Parkinson’s disease.

The researchers used the fractal analysis to break down the body motion of healthy elderly subjects and patients with Parkinson’s disease into simpler component parts. The aim being to reveal the differences in irregularity and complexity of the way individuals in each group walk. The computer analysis of the data revealed the complexity, as determined by a fractal measure, of the walking patterns of each group. The fractal measure falls between 1 and 2, and the higher the fractal measure (close to 2) the more complex the body motion, or the lower the fractal measure (close to 1) the less complex the body motion.

The authors say that the fractal measure for Parkinson’s disease patients is about 1.48, or higher than that of healthy elderly subjects, whereas the healthy elderly subjects have a fractal measure nearer 1.3.

This confirms the fractal nature of the gait in Parkinson’s patients, says the team, and provides them with a quantitative means to measure the severity of walking symptoms.

The Journal of Neural Engineering was launched by the Institute of Physics this week and can be viewed online at:

David Reid | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>