Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lock to food-borne pathogen pathway may be key to vaccine

02.02.2004


A previously unidentified protein on the surface of intestinal cells is giving Purdue University researchers clues on how to prevent disease


A computer monitor in Arun Bhunia’s research lab displays a Listeria monocytogenes adhering to human intestinal cells. Research conducted by Bhunia, a professor of food science at Purdue, and Jennifer Wampler, a postdoctoral student, led to the discovery of the protein on the surface of intestinal cells that allows a food-borne pathogen to attach to the intestine. (Purdue Agricultural Communications photo/Tom Campbell)



The scientists believe their results eventually could lead to a way to prevent food-borne Listeria monocytogenes infection, which has a 20 percent fatality rate, as well as other diseases. The study of the bacteria is reported in the February issue of the journal Infection and Immunity.

"This research reveals a detailed mechanism that allows interaction of Listeria with a cell-surface protein, or receptor, on intestinal cells," said Arun Bhunia, a Department of Food Science microbiologist. "Knowing the entryway into the cell will allow us in the future to develop a method to prevent that interaction."


Jennifer Wampler, a postdoctoral student and lead author of the study, said, "Listeria often is implicated in patients with weakened immune systems, so we think that this research could also give us clues as to how other diseases work. This receptor is not unique for Listeria, so it also could be used by other organisms to take advantage and get inside a host cell to cause disease."

Bacteria have proteins, called ligands, that bind with a protein molecule, or receptor, on cells in the body, which is like placing a key in a lock. This interaction opens the door that leads to a complicated series of biochemical reactions. These reactions allow the pathogen to enter cells, in this case in the intestine, and then move on into the liver, spleen, brain or placenta, causing illness and possibly death.

Listeria is responsible for about 2,500 recorded food-borne illnesses annually in the United States and is the deadliest food-borne disease, according to the Centers for Disease Control and Prevention. It is especially dangerous for pregnant women, the elderly and those with immuno-comprised diseases such as HIV. The infection can cause meningitis, brain-stem encephalitis and spontaneous abortion.

The Purdue team placed a Listeria protein known to bind with human host cells in a laboratory dish with human intestinal cells. They found that the bacteria’s ligand bound with an intestinal cell surface protein, which they identified as heat shock protein 60 (Hsp60).

Heat shock proteins are found in most cells. They are called chaperone proteins because they help other proteins stay organized when cells face any type of stress. Until recently, it was believed these proteins were only found in the mitochondria, the cells’ engines.

Now that researchers know that these proteins also are found on cell surfaces and act as receptors, they will begin investigating how to control the infection process.

In the study published in Infection and Immunity, the Purdue researchers used an anti-Hsp60 antibody, a built-in disease-fighting antibody that reduced Listeria’s ability to bind with intestinal cells by 74 percent

"If interaction of these two molecules is the beginning of the infection’s intestinal phase pathway that leads to illness, then we need to block them," Bhunia said. "Our focus now is to determine when and under what conditions the bacterium moves from intestinal cells into the system.

"If we understand the mechanism of how bacteria interacts with cells before causing damage and producing systemic illness, this may allow us to formulate a vaccination strategy to prevent the infection."

The Purdue researchers plan to study whether the Hsp60 is more abundant in the intestine and also in people most at risk for Listeria-caused food-borne disease, such as pregnant women or HIV patients, Wampler said. They also want to study what other diseases might use this or a similar pathway to enter the body.

Other researchers on this study were Kwang-Pyo Kim, a doctoral student, and Ziad Jaradat, a former postdoctoral student.

Bhunia also is a researcher in the Purdue Center for Food Safety Engineering, a collaboration among the university’s schools of Agriculture, Consumer and Family Sciences, Engineering, Veterinary Medicine and the U.S. Department of Agriculture-Agricultural Research Service.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Arun Bhunia, (765) 494-5443, bhunia@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040130.Bhunia.listeria.html
http://www.ars.usda.gov/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>