Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lock to food-borne pathogen pathway may be key to vaccine

02.02.2004


A previously unidentified protein on the surface of intestinal cells is giving Purdue University researchers clues on how to prevent disease


A computer monitor in Arun Bhunia’s research lab displays a Listeria monocytogenes adhering to human intestinal cells. Research conducted by Bhunia, a professor of food science at Purdue, and Jennifer Wampler, a postdoctoral student, led to the discovery of the protein on the surface of intestinal cells that allows a food-borne pathogen to attach to the intestine. (Purdue Agricultural Communications photo/Tom Campbell)



The scientists believe their results eventually could lead to a way to prevent food-borne Listeria monocytogenes infection, which has a 20 percent fatality rate, as well as other diseases. The study of the bacteria is reported in the February issue of the journal Infection and Immunity.

"This research reveals a detailed mechanism that allows interaction of Listeria with a cell-surface protein, or receptor, on intestinal cells," said Arun Bhunia, a Department of Food Science microbiologist. "Knowing the entryway into the cell will allow us in the future to develop a method to prevent that interaction."


Jennifer Wampler, a postdoctoral student and lead author of the study, said, "Listeria often is implicated in patients with weakened immune systems, so we think that this research could also give us clues as to how other diseases work. This receptor is not unique for Listeria, so it also could be used by other organisms to take advantage and get inside a host cell to cause disease."

Bacteria have proteins, called ligands, that bind with a protein molecule, or receptor, on cells in the body, which is like placing a key in a lock. This interaction opens the door that leads to a complicated series of biochemical reactions. These reactions allow the pathogen to enter cells, in this case in the intestine, and then move on into the liver, spleen, brain or placenta, causing illness and possibly death.

Listeria is responsible for about 2,500 recorded food-borne illnesses annually in the United States and is the deadliest food-borne disease, according to the Centers for Disease Control and Prevention. It is especially dangerous for pregnant women, the elderly and those with immuno-comprised diseases such as HIV. The infection can cause meningitis, brain-stem encephalitis and spontaneous abortion.

The Purdue team placed a Listeria protein known to bind with human host cells in a laboratory dish with human intestinal cells. They found that the bacteria’s ligand bound with an intestinal cell surface protein, which they identified as heat shock protein 60 (Hsp60).

Heat shock proteins are found in most cells. They are called chaperone proteins because they help other proteins stay organized when cells face any type of stress. Until recently, it was believed these proteins were only found in the mitochondria, the cells’ engines.

Now that researchers know that these proteins also are found on cell surfaces and act as receptors, they will begin investigating how to control the infection process.

In the study published in Infection and Immunity, the Purdue researchers used an anti-Hsp60 antibody, a built-in disease-fighting antibody that reduced Listeria’s ability to bind with intestinal cells by 74 percent

"If interaction of these two molecules is the beginning of the infection’s intestinal phase pathway that leads to illness, then we need to block them," Bhunia said. "Our focus now is to determine when and under what conditions the bacterium moves from intestinal cells into the system.

"If we understand the mechanism of how bacteria interacts with cells before causing damage and producing systemic illness, this may allow us to formulate a vaccination strategy to prevent the infection."

The Purdue researchers plan to study whether the Hsp60 is more abundant in the intestine and also in people most at risk for Listeria-caused food-borne disease, such as pregnant women or HIV patients, Wampler said. They also want to study what other diseases might use this or a similar pathway to enter the body.

Other researchers on this study were Kwang-Pyo Kim, a doctoral student, and Ziad Jaradat, a former postdoctoral student.

Bhunia also is a researcher in the Purdue Center for Food Safety Engineering, a collaboration among the university’s schools of Agriculture, Consumer and Family Sciences, Engineering, Veterinary Medicine and the U.S. Department of Agriculture-Agricultural Research Service.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Arun Bhunia, (765) 494-5443, bhunia@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040130.Bhunia.listeria.html
http://www.ars.usda.gov/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>