Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pacifying bacteria prevents lethal post-op infections


Détente, and a good fence, can be far more effective than all-out assault in the age-old war between man and microbe, University of Chicago researchers report in the February issue of Gastroenterology. By injecting a protective coating into the intestines to pacify bacteria there instead of relying on antibiotics to kill them, the scientists were able to protect mice from otherwise lethal infections.

The protective coating, a high-molecular-weight polyethylene glycol, protected mice who had had major surgery from infection with Pseudomonas aeruginosa, a virulent pathogen that quickly kills 100 percent of untreated mice. A Pseudomonas infection is one of the most lethal complications for patients after major surgery.

"If you can’t beat them -- and you can’t -- then you want to indulge them," says John Alverdy, M.D., associate professor of surgery at the University of Chicago and director of the study. "An unhappy parasite is programmed to kill the host and move on. So we decided to look for ways to gratify them, to please these powerful microbes and keep them content."

Pseudomonas aeruginosa is common, found in the intestines of about three percent of healthy people. It is also a frequent cause of hospital-acquired infections, especially after major surgery. In the bowel, this germ can be harmless, or it can turn deadly, causing gut-derived sepsis.

"This is a disease of human progress," explains Alverdy. When people are severely ill "we put them in intensive care, where almost every thing we do alarms these bacterial passengers."

Suddenly nutrients no longer pass through the intestines but are dripped directly into the blood stream. The bowel decreases its activity, rendering it far less able to contain the toxic effects of certain strains of bacteria. At the same time, the intestine undergoes erosion of its protective mucus coating.

"Bacteria are smart enough to sense this change and re-program their strategy from peaceful coexistence to one in which harm to their host can occur," Alverdy adds.

Pseudomonas, Alverdy’s team has found, detect an ill host’s vulnerability by sensing chemicals that indicate stress. They respond like a rival nation -- unhappy with its own boundaries and discovering weakness in a neighbor -- by invading, boring their way through the bowel wall and into the blood stream.

"At this point, bacteria sense that the host is vulnerable and a liability to their survival," says Alverdy. Pseudomonas has tools that let it evade and even disable the host’s immune system. It resists antibiotics and it secretes toxins similar to those used by diphtheria or anthrax.

"This is the most lethal of the opportunistic pathogens," he adds. "Patients with widespread Pseudomonas infection can die in a matter of days."

A coating with a high molecular weight polymer however, can form a surrogate bioshield, much like the intestine’s own mucus, and stop this whole process before it begins, essentially putting the bacteria at ease.

It prevents the chemical signals of stress from reaching the bacteria and triggering the virulent response. It also serves as a buffer between the bowel wall and the microbes, preventing them from attaching, the first step to crossing the barrier.

The researchers tested the approach by performing major surgery on mice, then introducing Pseudomonas into the bowel, a model that kills all the mice within two days.

One treatment with PEG 15-20, injected into the bowel at the time of infection, however, completely protected the mice. A solution taken my mouth four to eight hours after infection also protected all treated mice.

PEG 15-20 seems to have no adverse effects on the mice and had no effect on bacterial growth or viability. A lighter weight PEG, commonly used as an intestinal cleansing agent (Golytely, PEG-3.35) did not protect mice, although it did have a slight protective effect in the test tube.

Refinement of this approach, say the authors, could prevent hospital infections without using antibiotics.

Grants from the National Institutes of Health, the Packard Foundation and the National Science Foundation supported this work.

John Easton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>