Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacifying bacteria prevents lethal post-op infections

02.02.2004


Détente, and a good fence, can be far more effective than all-out assault in the age-old war between man and microbe, University of Chicago researchers report in the February issue of Gastroenterology. By injecting a protective coating into the intestines to pacify bacteria there instead of relying on antibiotics to kill them, the scientists were able to protect mice from otherwise lethal infections.



The protective coating, a high-molecular-weight polyethylene glycol, protected mice who had had major surgery from infection with Pseudomonas aeruginosa, a virulent pathogen that quickly kills 100 percent of untreated mice. A Pseudomonas infection is one of the most lethal complications for patients after major surgery.

"If you can’t beat them -- and you can’t -- then you want to indulge them," says John Alverdy, M.D., associate professor of surgery at the University of Chicago and director of the study. "An unhappy parasite is programmed to kill the host and move on. So we decided to look for ways to gratify them, to please these powerful microbes and keep them content."


Pseudomonas aeruginosa is common, found in the intestines of about three percent of healthy people. It is also a frequent cause of hospital-acquired infections, especially after major surgery. In the bowel, this germ can be harmless, or it can turn deadly, causing gut-derived sepsis.

"This is a disease of human progress," explains Alverdy. When people are severely ill "we put them in intensive care, where almost every thing we do alarms these bacterial passengers."

Suddenly nutrients no longer pass through the intestines but are dripped directly into the blood stream. The bowel decreases its activity, rendering it far less able to contain the toxic effects of certain strains of bacteria. At the same time, the intestine undergoes erosion of its protective mucus coating.

"Bacteria are smart enough to sense this change and re-program their strategy from peaceful coexistence to one in which harm to their host can occur," Alverdy adds.

Pseudomonas, Alverdy’s team has found, detect an ill host’s vulnerability by sensing chemicals that indicate stress. They respond like a rival nation -- unhappy with its own boundaries and discovering weakness in a neighbor -- by invading, boring their way through the bowel wall and into the blood stream.

"At this point, bacteria sense that the host is vulnerable and a liability to their survival," says Alverdy. Pseudomonas has tools that let it evade and even disable the host’s immune system. It resists antibiotics and it secretes toxins similar to those used by diphtheria or anthrax.

"This is the most lethal of the opportunistic pathogens," he adds. "Patients with widespread Pseudomonas infection can die in a matter of days."

A coating with a high molecular weight polymer however, can form a surrogate bioshield, much like the intestine’s own mucus, and stop this whole process before it begins, essentially putting the bacteria at ease.

It prevents the chemical signals of stress from reaching the bacteria and triggering the virulent response. It also serves as a buffer between the bowel wall and the microbes, preventing them from attaching, the first step to crossing the barrier.

The researchers tested the approach by performing major surgery on mice, then introducing Pseudomonas into the bowel, a model that kills all the mice within two days.

One treatment with PEG 15-20, injected into the bowel at the time of infection, however, completely protected the mice. A solution taken my mouth four to eight hours after infection also protected all treated mice.

PEG 15-20 seems to have no adverse effects on the mice and had no effect on bacterial growth or viability. A lighter weight PEG, commonly used as an intestinal cleansing agent (Golytely, PEG-3.35) did not protect mice, although it did have a slight protective effect in the test tube.

Refinement of this approach, say the authors, could prevent hospital infections without using antibiotics.


Grants from the National Institutes of Health, the Packard Foundation and the National Science Foundation supported this work.

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>