Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pacifying bacteria prevents lethal post-op infections

02.02.2004


Détente, and a good fence, can be far more effective than all-out assault in the age-old war between man and microbe, University of Chicago researchers report in the February issue of Gastroenterology. By injecting a protective coating into the intestines to pacify bacteria there instead of relying on antibiotics to kill them, the scientists were able to protect mice from otherwise lethal infections.



The protective coating, a high-molecular-weight polyethylene glycol, protected mice who had had major surgery from infection with Pseudomonas aeruginosa, a virulent pathogen that quickly kills 100 percent of untreated mice. A Pseudomonas infection is one of the most lethal complications for patients after major surgery.

"If you can’t beat them -- and you can’t -- then you want to indulge them," says John Alverdy, M.D., associate professor of surgery at the University of Chicago and director of the study. "An unhappy parasite is programmed to kill the host and move on. So we decided to look for ways to gratify them, to please these powerful microbes and keep them content."


Pseudomonas aeruginosa is common, found in the intestines of about three percent of healthy people. It is also a frequent cause of hospital-acquired infections, especially after major surgery. In the bowel, this germ can be harmless, or it can turn deadly, causing gut-derived sepsis.

"This is a disease of human progress," explains Alverdy. When people are severely ill "we put them in intensive care, where almost every thing we do alarms these bacterial passengers."

Suddenly nutrients no longer pass through the intestines but are dripped directly into the blood stream. The bowel decreases its activity, rendering it far less able to contain the toxic effects of certain strains of bacteria. At the same time, the intestine undergoes erosion of its protective mucus coating.

"Bacteria are smart enough to sense this change and re-program their strategy from peaceful coexistence to one in which harm to their host can occur," Alverdy adds.

Pseudomonas, Alverdy’s team has found, detect an ill host’s vulnerability by sensing chemicals that indicate stress. They respond like a rival nation -- unhappy with its own boundaries and discovering weakness in a neighbor -- by invading, boring their way through the bowel wall and into the blood stream.

"At this point, bacteria sense that the host is vulnerable and a liability to their survival," says Alverdy. Pseudomonas has tools that let it evade and even disable the host’s immune system. It resists antibiotics and it secretes toxins similar to those used by diphtheria or anthrax.

"This is the most lethal of the opportunistic pathogens," he adds. "Patients with widespread Pseudomonas infection can die in a matter of days."

A coating with a high molecular weight polymer however, can form a surrogate bioshield, much like the intestine’s own mucus, and stop this whole process before it begins, essentially putting the bacteria at ease.

It prevents the chemical signals of stress from reaching the bacteria and triggering the virulent response. It also serves as a buffer between the bowel wall and the microbes, preventing them from attaching, the first step to crossing the barrier.

The researchers tested the approach by performing major surgery on mice, then introducing Pseudomonas into the bowel, a model that kills all the mice within two days.

One treatment with PEG 15-20, injected into the bowel at the time of infection, however, completely protected the mice. A solution taken my mouth four to eight hours after infection also protected all treated mice.

PEG 15-20 seems to have no adverse effects on the mice and had no effect on bacterial growth or viability. A lighter weight PEG, commonly used as an intestinal cleansing agent (Golytely, PEG-3.35) did not protect mice, although it did have a slight protective effect in the test tube.

Refinement of this approach, say the authors, could prevent hospital infections without using antibiotics.


Grants from the National Institutes of Health, the Packard Foundation and the National Science Foundation supported this work.

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>