Careful study of changes in the genetic make-up of the SARS virus through the recent epidemic has allowed researchers from China and the University of Chicago to bolster the evidence for the animal origins of SARS and to chart three phases of the viruss molecular evolution as it gradually adapted to human hosts, becoming more infectious over time.
The earliest phase involved cases that appeared to be independent and featured viral genomes identical to those found in animal hosts, the researchers report in Science Express, the online version of the journal Science. The second phase, marked by clusters of human-to-human transmission, reveals how the virus quickly adapted to its human hosts. The third phase involved selection and stabilization, as the virus gravitated toward one common genotype that predominated through the end of the epidemic.
"What we see is the virus fine-tuning itself to enhance its access to a new host: humans," said study co-author Chung-I Wu, Ph.D., professor and chairman of ecology and evolution at the University of Chicago. "This is a disturbing process to watch, as the virus improves itself under selective pressure, learning to spread from person to person, then sticking with the version that is most effective."
John Easton | EurekAlert!
Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases
Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.
Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
19.04.2018 | Materials Sciences
Electromagnetic wizardry: Wireless power transfer enhanced by backward signal
19.04.2018 | Physics and Astronomy
Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Physics and Astronomy