Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create lung cancer ’cluster bombs’

30.01.2004


The butcher, the baker, and the candlestick maker may be more famous, but the pharmacist, the engineer, and the doctor may be onto something big.



The latter group has combined resources and knowledge to create a novel way to deliver a new lung cancer treatment. The new system, which uses "nanoparticle cluster bombs," has proven effective in treating cancerous lung cells in vitro (in a petri dish), it was reported today in the International Journal of Pharmaceuticals. The research team from the University of Alberta will conduct in vivo tests (in live specimens) early this year, with plans for clinical trials to follow.

"Based on what we’ve been able to do so far, we have practical hopes that a new lung delivery platform for lung cancer can be established," said Dr. Raimar Loebenberg, a professor of pharmacy at the U of A.


The three researchers - Loebenberg; Dr. Warren Finlay, a U of A mechanical engineering professor; and Dr. Wilson Roa, a U of A oncology professor - have applied for a patent on the lung cancer nanoparticle drug delivery system.

Loebenberg explained that the drug sits in powder form in the inhaler, which is similar to the device that asthmatics use. However, the difference between regular drugs and "nanoparticle cluster bombs," Loebenberg said, comes when the powder arrives in the lungs, where it dissolves into nanoparticles upon contact with moisture in the lung -usually mucous.

Each grain of drug powder contains "a few thousand nanoparticles," Finlay explained. "Once the nanoparticles are active in the lung they have a tremendous advantage over regular drugs, because they are better able to do exactly what we want them to."

The idea is that the nanoparticles can be programmed to escape immune system surveillance like a Trojan Horse, and carry designer drugs that target cancer cells while leaving healthy cells alone.

"This drug and this delivery system have a lot of potential--there are a lot of different things we can do as we’re able to control where and when the nanoparticles release their payload," said Finlay, who also has a patent pending on a new inhaler to go with the nanoparticle drug platform. "This platform system may be just the beginning. We’re looking at a lot of cool things we can do down the road."

"At this point, we’re excited and encouraged about what we’ve done and what we could do in the future," Loebenberg said, adding that the progress is due to the interdisciplinary collaboration between experts in three fields.

"This was not the result of one brain, but three," he said. "At first, when we started working together we didn’t understand each other very well, but now I think we make a pretty good team, and I think we’ve created something that has good potential for a solution to lung cancer."


The researchers can be reached at:
Dr. Warren Finlay 780-492-4707 or warren.finlay@ualberta.ca
Dr. Raimar Loebenbert 780-492-1255 or rloebenberg@pharmacy.ualberta.ca
Dr. Wilson Roa 780-432-8517 or wilsonro@cancerboard.ab.ca

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>