Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the cellular ’garbage disposal’ grinds to a halt to cause Batten disease

29.01.2004


Scientists have discovered just how a genetic defect disrupts the cellular "garbage disposal" of a cell, resulting in a horrific childhood disease that kills most patients before the age of 25.



For nine years researchers have known the precise genetic flaw that causes Batten disease. But understanding how a straightforward mistake in life’s blueprint translates to a disease that ravages roughly 1,000 children in the United States each year has been a challenge. Now, in a paper in the Dec. 23 issue of the Proceedings of the National Academy of Sciences, a team from the University of Rochester Medical Center lays out the sequence of biochemical steps that results in the disease.

The team led by David A. Pearce, Ph.D., of the Center for Aging and Developmental Biology found that the genetic defect is linked to a protein that regulates the amino acid arginine in and out of a yeast organelle called the vacuole. The vacuole in yeast is much like the lysosome in human cells, slicing and dicing up cellular waste and then disposing or recycling the material. In Batten disease and other lysosomal storage disorders, the lysosomes don’t work correctly and cells swell up with gunk that eventually kills them.


Pearce’s team found that the trouble with arginine levels is critical to throwing the pH levels of cells in lysosomes out of whack, affecting a range of processes and ultimately ruining a cell’s ability to get rid of its own waste.

"It’s a little bit like getting sugar in your gas tank," Pearce says. "Once you change the mix just a little, it has drastic repercussions throughout the system."

Children with Batten disease are born healthy, but often, around age 4 or 5, the first symptoms appear as a minor problem with a child’s eyesight. Subsequently the malfunctioning lysosomes result in the death of more and more brain cells, and patients are beset with a host of medical problems: frequent seizures, loss of the ability to speak or move, and mental retardation. Most patients die in their teens or 20s.

A biochemist who uses yeast to study basic biological processes, in the past few years Pearce’s laboratory has grown to more than a dozen scientists focusing on Batten disease. Based on his findings, a Rochester team hopes to conduct the first clinical trial in search of a treatment for the disease. Pearce, an assistant professor in the Department of Biochemistry and Biophysics, also serves as the scientific adviser for the Batten Disease Support and Research Foundation and meets children with the disease, and their families, on an ongoing basis.

"When I began this research, I had just become a parent, and I was horrified to find out that such a disease is out there," says Pearce. "It’s my goal to be able to offer these children and their families some relief from this terrible illness."

The work was funded by the National Institutes of Health and the Luke and Rachel Batten Foundation. Other authors of the PNAS paper include former graduate student Yoojin Kim, Ph.D., now at Oregon Health Sciences Center, and graduate student Denia Ramirez-Montealegre.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>