Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the cellular ’garbage disposal’ grinds to a halt to cause Batten disease

29.01.2004


Scientists have discovered just how a genetic defect disrupts the cellular "garbage disposal" of a cell, resulting in a horrific childhood disease that kills most patients before the age of 25.



For nine years researchers have known the precise genetic flaw that causes Batten disease. But understanding how a straightforward mistake in life’s blueprint translates to a disease that ravages roughly 1,000 children in the United States each year has been a challenge. Now, in a paper in the Dec. 23 issue of the Proceedings of the National Academy of Sciences, a team from the University of Rochester Medical Center lays out the sequence of biochemical steps that results in the disease.

The team led by David A. Pearce, Ph.D., of the Center for Aging and Developmental Biology found that the genetic defect is linked to a protein that regulates the amino acid arginine in and out of a yeast organelle called the vacuole. The vacuole in yeast is much like the lysosome in human cells, slicing and dicing up cellular waste and then disposing or recycling the material. In Batten disease and other lysosomal storage disorders, the lysosomes don’t work correctly and cells swell up with gunk that eventually kills them.


Pearce’s team found that the trouble with arginine levels is critical to throwing the pH levels of cells in lysosomes out of whack, affecting a range of processes and ultimately ruining a cell’s ability to get rid of its own waste.

"It’s a little bit like getting sugar in your gas tank," Pearce says. "Once you change the mix just a little, it has drastic repercussions throughout the system."

Children with Batten disease are born healthy, but often, around age 4 or 5, the first symptoms appear as a minor problem with a child’s eyesight. Subsequently the malfunctioning lysosomes result in the death of more and more brain cells, and patients are beset with a host of medical problems: frequent seizures, loss of the ability to speak or move, and mental retardation. Most patients die in their teens or 20s.

A biochemist who uses yeast to study basic biological processes, in the past few years Pearce’s laboratory has grown to more than a dozen scientists focusing on Batten disease. Based on his findings, a Rochester team hopes to conduct the first clinical trial in search of a treatment for the disease. Pearce, an assistant professor in the Department of Biochemistry and Biophysics, also serves as the scientific adviser for the Batten Disease Support and Research Foundation and meets children with the disease, and their families, on an ongoing basis.

"When I began this research, I had just become a parent, and I was horrified to find out that such a disease is out there," says Pearce. "It’s my goal to be able to offer these children and their families some relief from this terrible illness."

The work was funded by the National Institutes of Health and the Luke and Rachel Batten Foundation. Other authors of the PNAS paper include former graduate student Yoojin Kim, Ph.D., now at Oregon Health Sciences Center, and graduate student Denia Ramirez-Montealegre.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>