Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the cellular ’garbage disposal’ grinds to a halt to cause Batten disease

29.01.2004


Scientists have discovered just how a genetic defect disrupts the cellular "garbage disposal" of a cell, resulting in a horrific childhood disease that kills most patients before the age of 25.



For nine years researchers have known the precise genetic flaw that causes Batten disease. But understanding how a straightforward mistake in life’s blueprint translates to a disease that ravages roughly 1,000 children in the United States each year has been a challenge. Now, in a paper in the Dec. 23 issue of the Proceedings of the National Academy of Sciences, a team from the University of Rochester Medical Center lays out the sequence of biochemical steps that results in the disease.

The team led by David A. Pearce, Ph.D., of the Center for Aging and Developmental Biology found that the genetic defect is linked to a protein that regulates the amino acid arginine in and out of a yeast organelle called the vacuole. The vacuole in yeast is much like the lysosome in human cells, slicing and dicing up cellular waste and then disposing or recycling the material. In Batten disease and other lysosomal storage disorders, the lysosomes don’t work correctly and cells swell up with gunk that eventually kills them.


Pearce’s team found that the trouble with arginine levels is critical to throwing the pH levels of cells in lysosomes out of whack, affecting a range of processes and ultimately ruining a cell’s ability to get rid of its own waste.

"It’s a little bit like getting sugar in your gas tank," Pearce says. "Once you change the mix just a little, it has drastic repercussions throughout the system."

Children with Batten disease are born healthy, but often, around age 4 or 5, the first symptoms appear as a minor problem with a child’s eyesight. Subsequently the malfunctioning lysosomes result in the death of more and more brain cells, and patients are beset with a host of medical problems: frequent seizures, loss of the ability to speak or move, and mental retardation. Most patients die in their teens or 20s.

A biochemist who uses yeast to study basic biological processes, in the past few years Pearce’s laboratory has grown to more than a dozen scientists focusing on Batten disease. Based on his findings, a Rochester team hopes to conduct the first clinical trial in search of a treatment for the disease. Pearce, an assistant professor in the Department of Biochemistry and Biophysics, also serves as the scientific adviser for the Batten Disease Support and Research Foundation and meets children with the disease, and their families, on an ongoing basis.

"When I began this research, I had just become a parent, and I was horrified to find out that such a disease is out there," says Pearce. "It’s my goal to be able to offer these children and their families some relief from this terrible illness."

The work was funded by the National Institutes of Health and the Luke and Rachel Batten Foundation. Other authors of the PNAS paper include former graduate student Yoojin Kim, Ph.D., now at Oregon Health Sciences Center, and graduate student Denia Ramirez-Montealegre.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>