Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Muscles respond to getting on your feet after spinal cord injury

27.01.2004


When someone’s spinal cord is completely severed, brain signals can no longer reach the legs to tell the legs to walk.



A study in this month’s journal Spinal Cord shows that those who have suffered a spinal cord injury can generate muscle activity independent of brain signals. Dan Ferris, now an assistant professor of kinesiology at U-M, led the research as part of his post-doctorate work with Susan Harkema at University of California Los Angeles David Geffen School of Medicine.

While many studies have shown that locomotor training, such as working with patients on treadmills, is a viable therapy for helping those who have suffered a spinal cord injury learn to walk again, Ferris and his UCLA colleagues added further evidence that adding weight to the limbs during therapy can provide an important sensory cue to help regain walking.


They also found that moving one leg in therapy can help activate muscles in the opposite leg.

"Nobody has been able to show that in humans before," said Ferris, also an assistant professor of biomedical engineering. "It appears there are left-to-right connections in the signal in the spinal cord, not just connections from the brain to the legs."

The research was partially supported by five grants from the National Institutes of Health.

The team worked with four patients with clinically complete spinal cord injury, doing about 30 sessions with each over about 1.5 years. They hooked each subject into a harness suspended over a treadmill. Trainers helped move the subjects’ legs as they stepped on the treadmill.

When the subjects were positioned so that just one leg was on the moving treadmill belt and the other was off the side, not touching the treadmill surface, the team was able to get muscle response in one leg by simulating walking with the other.

"If you step one leg, you can get muscle activation in the other, even when it isn’t moving," Ferris said. "This shows that it isn’t just muscle stretch that causes activitation."

Ferris and the team - Harkema, Keith Gordan and Janell Beres-Jones - see great potential in this information for developing rehabilitation strategies.

Therapists helping patients recover from spinal cord injury should provide sensory information that simulates walking as closely as possible. Weight loading and movement in one leg can influence what happens in the other leg.

The Christopher Reeve Paralysis Foundation is funding another project, led by Ferris, to build powered braces to help those with spinal cord injury regain the ability to walk. Ferris speculates that perhaps such braces could help move the legs to recreate a more normal stepping pattern during rehabilitation. Ferris is testing a working model of the braces to assist patients in walking.

Harkema is heading up a second project funded by the foundation to study the therapeutic effects of stand training after spinal cord injury.

Colleen Newvine | EurekAlert!
Further information:
http://www-personal.umich.edu/~ferrisdp/
http://www.harkema.ucla.edu/
http://www.nature.com/cgi-taf/DynaPage.taf?file=/sc/journal/v42/n1/full/3101542a.html

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>