Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Muscles respond to getting on your feet after spinal cord injury

27.01.2004


When someone’s spinal cord is completely severed, brain signals can no longer reach the legs to tell the legs to walk.



A study in this month’s journal Spinal Cord shows that those who have suffered a spinal cord injury can generate muscle activity independent of brain signals. Dan Ferris, now an assistant professor of kinesiology at U-M, led the research as part of his post-doctorate work with Susan Harkema at University of California Los Angeles David Geffen School of Medicine.

While many studies have shown that locomotor training, such as working with patients on treadmills, is a viable therapy for helping those who have suffered a spinal cord injury learn to walk again, Ferris and his UCLA colleagues added further evidence that adding weight to the limbs during therapy can provide an important sensory cue to help regain walking.


They also found that moving one leg in therapy can help activate muscles in the opposite leg.

"Nobody has been able to show that in humans before," said Ferris, also an assistant professor of biomedical engineering. "It appears there are left-to-right connections in the signal in the spinal cord, not just connections from the brain to the legs."

The research was partially supported by five grants from the National Institutes of Health.

The team worked with four patients with clinically complete spinal cord injury, doing about 30 sessions with each over about 1.5 years. They hooked each subject into a harness suspended over a treadmill. Trainers helped move the subjects’ legs as they stepped on the treadmill.

When the subjects were positioned so that just one leg was on the moving treadmill belt and the other was off the side, not touching the treadmill surface, the team was able to get muscle response in one leg by simulating walking with the other.

"If you step one leg, you can get muscle activation in the other, even when it isn’t moving," Ferris said. "This shows that it isn’t just muscle stretch that causes activitation."

Ferris and the team - Harkema, Keith Gordan and Janell Beres-Jones - see great potential in this information for developing rehabilitation strategies.

Therapists helping patients recover from spinal cord injury should provide sensory information that simulates walking as closely as possible. Weight loading and movement in one leg can influence what happens in the other leg.

The Christopher Reeve Paralysis Foundation is funding another project, led by Ferris, to build powered braces to help those with spinal cord injury regain the ability to walk. Ferris speculates that perhaps such braces could help move the legs to recreate a more normal stepping pattern during rehabilitation. Ferris is testing a working model of the braces to assist patients in walking.

Harkema is heading up a second project funded by the foundation to study the therapeutic effects of stand training after spinal cord injury.

Colleen Newvine | EurekAlert!
Further information:
http://www-personal.umich.edu/~ferrisdp/
http://www.harkema.ucla.edu/
http://www.nature.com/cgi-taf/DynaPage.taf?file=/sc/journal/v42/n1/full/3101542a.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>