Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacterium that causes food poisoning may lead to better anti-viral vaccines


A new vaccine formulation that utilizes an unusual protein derived from a bacterium that causes food poisoning — Listeria — could paradoxically be used to improve the safety and effectiveness of vaccines for a variety of viral diseases. These could include HIV, smallpox and influenza, according to researchers at the University of Michigan.

Conventional vaccine formulations typically use live or weakened viruses to boost the immune response. The Listeria formulation uses viral protein components along with the bacterial protein, reducing the possibility of accidental viral infection. In preliminary animal studies, the new vaccine also appeared to boost the immune response better than a conventional vaccine, according to the researchers.

Their study appears in the inaugural (January) issue of Molecular Pharmaceutics, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The new bi-monthly journal focuses on the emerging and evolving fields of the molecular mechanisms of drugs and drug delivery.

The vaccine incorporates a bacterial protein called listeriolysin O (LLO), which has the unusual ability to allow Listeria to cut through and enter certain cells that are involved in the immune response. These cells, called macrophages, are in turn able to activate other immune cells called cytotoxic T-lymphocytes, which are needed for complete protection against viral diseases but are not adequately activated by conventional vaccine formulations. By boosting the activity of these cells along with the production of viral antibodies, the new vaccine formulation could ultimately help save lives, the researchers say.

"Today’s vaccines are lifesavers, but there’s still much room for improvement," says study leader Kyung-Dall Lee, Ph.D., an associate professor in the Department of Pharmaceutical Sciences at the University of Michigan, Ann Arbor. "We’ve shown that vaccines produced using the listeriolysin O protein can dramatically boost the immune response [in mice]. We’re very excited about this promising vaccine delivery system, which could pave the way for the next generation of safer, more effective vaccines."

In preliminary studies using a mouse model of viral meningitis, a vaccine containing a genetically engineered version of the LLO protein was used to effectively immunize a small group of mice against a lethal viral strain — with a 100 percent survival rate, the researchers say. By contrast, half of the mice died that were given a conventional meningitis vaccine formulation, while none of the non-immunized mice survived, they add.

Lee and his associates had first demonstrated in cell studies that the LLO protein isolated from Listeria could boost immune responses. He then genetically engineered the protein into the new vaccine formulation for enhanced immune protection.

This study represents the first time the experimental strategy has been shown to work in live animal models of viral infection and represents a promising strategy for boosting both antibodies and cytotoxic T-lymphocytes (or T-cells) simultaneously, which are needed to maximize the immune system’s response against viral attack, Lee and his associates say.

If further studies are successful, the vaccine delivery system could be available to make a variety of anti-viral vaccines for consumers in several years, Lee predicts. In particular, the finding renews hope of eventually developing an effective HIV vaccine to stem the spread of AIDS. Clinical studies are still needed for each specific vaccine, he cautions.

"We harnessed the clever invasive machinery of Listeria and developed it into a potentially safer and more effective vaccine delivery formulation," says Lee, who holds a patent related to the LLO vaccine delivery technique. He adds that the technique also holds promise for developing vaccines for other diseases, including cancer and SARS.

The National Institutes of Health provided funding for this study.

Michael Bernstein | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>