Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium that causes food poisoning may lead to better anti-viral vaccines

23.01.2004


A new vaccine formulation that utilizes an unusual protein derived from a bacterium that causes food poisoning — Listeria — could paradoxically be used to improve the safety and effectiveness of vaccines for a variety of viral diseases. These could include HIV, smallpox and influenza, according to researchers at the University of Michigan.



Conventional vaccine formulations typically use live or weakened viruses to boost the immune response. The Listeria formulation uses viral protein components along with the bacterial protein, reducing the possibility of accidental viral infection. In preliminary animal studies, the new vaccine also appeared to boost the immune response better than a conventional vaccine, according to the researchers.

Their study appears in the inaugural (January) issue of Molecular Pharmaceutics, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The new bi-monthly journal focuses on the emerging and evolving fields of the molecular mechanisms of drugs and drug delivery.


The vaccine incorporates a bacterial protein called listeriolysin O (LLO), which has the unusual ability to allow Listeria to cut through and enter certain cells that are involved in the immune response. These cells, called macrophages, are in turn able to activate other immune cells called cytotoxic T-lymphocytes, which are needed for complete protection against viral diseases but are not adequately activated by conventional vaccine formulations. By boosting the activity of these cells along with the production of viral antibodies, the new vaccine formulation could ultimately help save lives, the researchers say.

"Today’s vaccines are lifesavers, but there’s still much room for improvement," says study leader Kyung-Dall Lee, Ph.D., an associate professor in the Department of Pharmaceutical Sciences at the University of Michigan, Ann Arbor. "We’ve shown that vaccines produced using the listeriolysin O protein can dramatically boost the immune response [in mice]. We’re very excited about this promising vaccine delivery system, which could pave the way for the next generation of safer, more effective vaccines."

In preliminary studies using a mouse model of viral meningitis, a vaccine containing a genetically engineered version of the LLO protein was used to effectively immunize a small group of mice against a lethal viral strain — with a 100 percent survival rate, the researchers say. By contrast, half of the mice died that were given a conventional meningitis vaccine formulation, while none of the non-immunized mice survived, they add.

Lee and his associates had first demonstrated in cell studies that the LLO protein isolated from Listeria could boost immune responses. He then genetically engineered the protein into the new vaccine formulation for enhanced immune protection.

This study represents the first time the experimental strategy has been shown to work in live animal models of viral infection and represents a promising strategy for boosting both antibodies and cytotoxic T-lymphocytes (or T-cells) simultaneously, which are needed to maximize the immune system’s response against viral attack, Lee and his associates say.

If further studies are successful, the vaccine delivery system could be available to make a variety of anti-viral vaccines for consumers in several years, Lee predicts. In particular, the finding renews hope of eventually developing an effective HIV vaccine to stem the spread of AIDS. Clinical studies are still needed for each specific vaccine, he cautions.

"We harnessed the clever invasive machinery of Listeria and developed it into a potentially safer and more effective vaccine delivery formulation," says Lee, who holds a patent related to the LLO vaccine delivery technique. He adds that the technique also holds promise for developing vaccines for other diseases, including cancer and SARS.


The National Institutes of Health provided funding for this study.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>