Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium that causes food poisoning may lead to better anti-viral vaccines

23.01.2004


A new vaccine formulation that utilizes an unusual protein derived from a bacterium that causes food poisoning — Listeria — could paradoxically be used to improve the safety and effectiveness of vaccines for a variety of viral diseases. These could include HIV, smallpox and influenza, according to researchers at the University of Michigan.



Conventional vaccine formulations typically use live or weakened viruses to boost the immune response. The Listeria formulation uses viral protein components along with the bacterial protein, reducing the possibility of accidental viral infection. In preliminary animal studies, the new vaccine also appeared to boost the immune response better than a conventional vaccine, according to the researchers.

Their study appears in the inaugural (January) issue of Molecular Pharmaceutics, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The new bi-monthly journal focuses on the emerging and evolving fields of the molecular mechanisms of drugs and drug delivery.


The vaccine incorporates a bacterial protein called listeriolysin O (LLO), which has the unusual ability to allow Listeria to cut through and enter certain cells that are involved in the immune response. These cells, called macrophages, are in turn able to activate other immune cells called cytotoxic T-lymphocytes, which are needed for complete protection against viral diseases but are not adequately activated by conventional vaccine formulations. By boosting the activity of these cells along with the production of viral antibodies, the new vaccine formulation could ultimately help save lives, the researchers say.

"Today’s vaccines are lifesavers, but there’s still much room for improvement," says study leader Kyung-Dall Lee, Ph.D., an associate professor in the Department of Pharmaceutical Sciences at the University of Michigan, Ann Arbor. "We’ve shown that vaccines produced using the listeriolysin O protein can dramatically boost the immune response [in mice]. We’re very excited about this promising vaccine delivery system, which could pave the way for the next generation of safer, more effective vaccines."

In preliminary studies using a mouse model of viral meningitis, a vaccine containing a genetically engineered version of the LLO protein was used to effectively immunize a small group of mice against a lethal viral strain — with a 100 percent survival rate, the researchers say. By contrast, half of the mice died that were given a conventional meningitis vaccine formulation, while none of the non-immunized mice survived, they add.

Lee and his associates had first demonstrated in cell studies that the LLO protein isolated from Listeria could boost immune responses. He then genetically engineered the protein into the new vaccine formulation for enhanced immune protection.

This study represents the first time the experimental strategy has been shown to work in live animal models of viral infection and represents a promising strategy for boosting both antibodies and cytotoxic T-lymphocytes (or T-cells) simultaneously, which are needed to maximize the immune system’s response against viral attack, Lee and his associates say.

If further studies are successful, the vaccine delivery system could be available to make a variety of anti-viral vaccines for consumers in several years, Lee predicts. In particular, the finding renews hope of eventually developing an effective HIV vaccine to stem the spread of AIDS. Clinical studies are still needed for each specific vaccine, he cautions.

"We harnessed the clever invasive machinery of Listeria and developed it into a potentially safer and more effective vaccine delivery formulation," says Lee, who holds a patent related to the LLO vaccine delivery technique. He adds that the technique also holds promise for developing vaccines for other diseases, including cancer and SARS.


The National Institutes of Health provided funding for this study.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>