Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium that causes food poisoning may lead to better anti-viral vaccines

23.01.2004


A new vaccine formulation that utilizes an unusual protein derived from a bacterium that causes food poisoning — Listeria — could paradoxically be used to improve the safety and effectiveness of vaccines for a variety of viral diseases. These could include HIV, smallpox and influenza, according to researchers at the University of Michigan.



Conventional vaccine formulations typically use live or weakened viruses to boost the immune response. The Listeria formulation uses viral protein components along with the bacterial protein, reducing the possibility of accidental viral infection. In preliminary animal studies, the new vaccine also appeared to boost the immune response better than a conventional vaccine, according to the researchers.

Their study appears in the inaugural (January) issue of Molecular Pharmaceutics, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The new bi-monthly journal focuses on the emerging and evolving fields of the molecular mechanisms of drugs and drug delivery.


The vaccine incorporates a bacterial protein called listeriolysin O (LLO), which has the unusual ability to allow Listeria to cut through and enter certain cells that are involved in the immune response. These cells, called macrophages, are in turn able to activate other immune cells called cytotoxic T-lymphocytes, which are needed for complete protection against viral diseases but are not adequately activated by conventional vaccine formulations. By boosting the activity of these cells along with the production of viral antibodies, the new vaccine formulation could ultimately help save lives, the researchers say.

"Today’s vaccines are lifesavers, but there’s still much room for improvement," says study leader Kyung-Dall Lee, Ph.D., an associate professor in the Department of Pharmaceutical Sciences at the University of Michigan, Ann Arbor. "We’ve shown that vaccines produced using the listeriolysin O protein can dramatically boost the immune response [in mice]. We’re very excited about this promising vaccine delivery system, which could pave the way for the next generation of safer, more effective vaccines."

In preliminary studies using a mouse model of viral meningitis, a vaccine containing a genetically engineered version of the LLO protein was used to effectively immunize a small group of mice against a lethal viral strain — with a 100 percent survival rate, the researchers say. By contrast, half of the mice died that were given a conventional meningitis vaccine formulation, while none of the non-immunized mice survived, they add.

Lee and his associates had first demonstrated in cell studies that the LLO protein isolated from Listeria could boost immune responses. He then genetically engineered the protein into the new vaccine formulation for enhanced immune protection.

This study represents the first time the experimental strategy has been shown to work in live animal models of viral infection and represents a promising strategy for boosting both antibodies and cytotoxic T-lymphocytes (or T-cells) simultaneously, which are needed to maximize the immune system’s response against viral attack, Lee and his associates say.

If further studies are successful, the vaccine delivery system could be available to make a variety of anti-viral vaccines for consumers in several years, Lee predicts. In particular, the finding renews hope of eventually developing an effective HIV vaccine to stem the spread of AIDS. Clinical studies are still needed for each specific vaccine, he cautions.

"We harnessed the clever invasive machinery of Listeria and developed it into a potentially safer and more effective vaccine delivery formulation," says Lee, who holds a patent related to the LLO vaccine delivery technique. He adds that the technique also holds promise for developing vaccines for other diseases, including cancer and SARS.


The National Institutes of Health provided funding for this study.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>