Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound-guided liposomes boost imaging, target drug/gene therapy

23.01.2004


One of the newest tools in the diagnosis and treatment of cardiovascular disease and stroke combines a 40-year-old imaging technique and liposomes, little globules of soluble fats and water that circulate naturally throughout the bloodstream.



The technique, developed by Northwestern University researcher David D. McPherson, M.D., and colleagues with a $2.3 million grant from the National Institutes of Health, uses ultrasound energy to create microbubbles inside specially treated liposomes and then direct the liposomes to specific targets, such as atherosclerotic plaques or blood clots, in the coronary arteries and other arteries in the body, including those to the brain.

Once they reach their target in the arteries, the echogenic liposomes, or ELIPs, produce an acoustic shadow that improves ultrasound’s ability to visualize and diagnose the extent of plaques or clots within the arteries.


Further, the ELIPs can be treated to also encapsulate certain drugs, such as antibiotics or thrombolytic (clot-busting) drugs or gene therapy, which, with the help of ultrasonic pulses, can be released at the site of a plaque or a clot or into living cells. This is caused by cavitation, the ability of the ultrasound to increase the energy of the microbubble, which then opens the cell membrane and allows drugs to enter.

McPherson, who is Lester B. and Frances T. Knight Professor of Cardiology and professor of medicine at the Feinberg School of Medicine at Northwestern University, believes that the ultrasound technique may further understanding of how atherosclerotic plaques develop and grow, as well as enhance more than tenfold scientists’ ability to target drug or gene therapy toward specific atherosclerotic components or affected tissue without damaging cells.

"The science of ultrasound, in addition to its imaging capability, also lies in its biologic effects. By harnessing the physical effects of ultrasound, we can physiologically evaluate and therapeutically affect vascular and biologic tissue," said McPherson, who is conducting the ultrasound/liposome research with scientists from Northwestern and the University of Cincinnati.

"While our research is in the early stages, we believe that our combined technology will have far-reaching implications in humans, allowing for more directed atherosclerotic and thrombolytic therapy," McPherson said.

Ultrasonography is a 40-year-old noninvasive, two-dimensional imaging technique used to examine and measure internal body structures and to detect body abnormalities. In cardiology, ultrasound is used to see inside the heart to identify abnormal structures or functions, for example, to measure blood flow through heart and in major blood vessels.

Liposomes are used in the cosmetic industry to transport small molecules into cells. The liposome wall is similar in composition to the material of cell membranes. This enables liposomes to merge readily with cellular membranes and release molecules into cells.

Collaborating with McPherson on the ultrasound/liposome research are Christy Holland, University of Cincinnati; and Shao-Ling Huang, Bonnie J. Kane, Robert C. McDonald, Ashwin Nagaraj, Sanford I. Roth and Susan D. Tiukinhoy, Northwestern University.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>