Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotion-regulating protein lacking in panic disorder

22.01.2004


Three brain areas of panic disorder patients are lacking in a key component of a chemical messenger system that regulates emotion, researchers at the NIH’s National Institute of Mental Health (NIMH) have discovered. Brain scans revealed that a type of serotonin receptor is reduced by nearly a third in three structures straddling the center of the brain. The finding is the first in living humans to show that the receptor, which is pivotal to the action of widely prescribed anti-anxiety medications, may be abnormal in the disorder, and may help to explain how genes might influence vulnerability. Drs. Alexander Neumeister and Wayne Drevets, NIMH Mood and Anxiety Disorders Program, and colleagues, report on their findings in the January 21, 2004 Journal of Neuroscience.



Each year, panic attacks strike about 2.4 million American adults "out of the blue," with feelings of intense fear and physical symptoms sometimes confused with a heart attack. Unchecked, the disorder often sets in motion a debilitating psychological sequel syndrome of agoraphobia, avoiding public places. Panic disorder runs in families and researchers have long suspected that it has a genetic component. The new finding, combined with evidence from recent animal studies, suggests that genes might increase risk for the disorder by coding for decreased expression of the receptors, say the researchers.

NIMH grantee Dr. Rene Hen, Columbia University, and colleagues, reported in 2002 that a strain of gene "knockout" mice, engineered to lack the receptor during a critical period in early development, exhibit anxiety traits in adulthood, such as a reluctance to begin eating in an unfamiliar environment. More recent experiments with the knockout mice show that a popular SSRI (serotonin selective reuptake inhibitor) drug produces its anti-anxiety effects by stimulating the formation of new neurons in the hippocampus via the serotonin 5-HT1A receptor.


In the current study, Neumeister and Drevets used PET scans (positron emission tomography) to visualize 5-HT1A receptors in brain areas of interest in 16 panic disorder patients – seven of whom also suffered from major depression – and 15 matched healthy controls. A new radioactive tracer (FCWAY), developed by NIH Clinical Center PET scan scientists, binds to the receptors, revealing their locations and a numerical count by brain region. Subjects also underwent structural MRI (magnetic resonance imaging) scans, which were overlaid with their PET scan data to precisely match it with brain structures.

In the panic disorder patients, including those who also had depression, receptors were reduced by an average of nearly a third in the anterior cingulate in the front middle part of the brain, the posterior cingulate, in the rear middle part of the brain, and in the raphe, in the midbrain (See images below.). Previous functional brain imaging studies have implicated both the anterior and posterior cingulate in the regulation of anxiety. Stimulation of 5-HT1A receptors in the raphe regulates serotonin synthesis and release. In an earlier PET study of depressed patients, using a different tracer, Drevets and colleagues found less dramatic reductions of the receptor in the anterior and posterior cingulate, but a 41 percent reduction in the raphe. These findings add to evidence for overlap between depression and anxiety disorders.

Although animal experiments have shown that cortisol secretion triggered by repeated stress reduces expression of the gene that codes for the 5-HT1A receptor, such stress hormone elevations are usually not found in panic disorder. Noting the recent discovery of a variant of the 5-HT1A receptor gene linked to major depression and suicide, the researchers suggest that reduced expression of the receptor "may be a source of vulnerability in humans, and that abnormal function of these receptors appears to specifically impact the cortical circuitry involved in the regulation of anxiety."


Other researchers who participated in the study are Drs. Earle Bain, Allison Nugent, Omer Bonne, David Luckenbaugh, Dennis Charney, NIMH; Richard Carson, William Eckelman, Peter Herscovitch, Warren G. Magnuson Clinical Center.

The National Institute of Mental Health (NIMH) and the Warren G. Magnuson Clinical Center are parts of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>