Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotion-regulating protein lacking in panic disorder

22.01.2004


Three brain areas of panic disorder patients are lacking in a key component of a chemical messenger system that regulates emotion, researchers at the NIH’s National Institute of Mental Health (NIMH) have discovered. Brain scans revealed that a type of serotonin receptor is reduced by nearly a third in three structures straddling the center of the brain. The finding is the first in living humans to show that the receptor, which is pivotal to the action of widely prescribed anti-anxiety medications, may be abnormal in the disorder, and may help to explain how genes might influence vulnerability. Drs. Alexander Neumeister and Wayne Drevets, NIMH Mood and Anxiety Disorders Program, and colleagues, report on their findings in the January 21, 2004 Journal of Neuroscience.



Each year, panic attacks strike about 2.4 million American adults "out of the blue," with feelings of intense fear and physical symptoms sometimes confused with a heart attack. Unchecked, the disorder often sets in motion a debilitating psychological sequel syndrome of agoraphobia, avoiding public places. Panic disorder runs in families and researchers have long suspected that it has a genetic component. The new finding, combined with evidence from recent animal studies, suggests that genes might increase risk for the disorder by coding for decreased expression of the receptors, say the researchers.

NIMH grantee Dr. Rene Hen, Columbia University, and colleagues, reported in 2002 that a strain of gene "knockout" mice, engineered to lack the receptor during a critical period in early development, exhibit anxiety traits in adulthood, such as a reluctance to begin eating in an unfamiliar environment. More recent experiments with the knockout mice show that a popular SSRI (serotonin selective reuptake inhibitor) drug produces its anti-anxiety effects by stimulating the formation of new neurons in the hippocampus via the serotonin 5-HT1A receptor.


In the current study, Neumeister and Drevets used PET scans (positron emission tomography) to visualize 5-HT1A receptors in brain areas of interest in 16 panic disorder patients – seven of whom also suffered from major depression – and 15 matched healthy controls. A new radioactive tracer (FCWAY), developed by NIH Clinical Center PET scan scientists, binds to the receptors, revealing their locations and a numerical count by brain region. Subjects also underwent structural MRI (magnetic resonance imaging) scans, which were overlaid with their PET scan data to precisely match it with brain structures.

In the panic disorder patients, including those who also had depression, receptors were reduced by an average of nearly a third in the anterior cingulate in the front middle part of the brain, the posterior cingulate, in the rear middle part of the brain, and in the raphe, in the midbrain (See images below.). Previous functional brain imaging studies have implicated both the anterior and posterior cingulate in the regulation of anxiety. Stimulation of 5-HT1A receptors in the raphe regulates serotonin synthesis and release. In an earlier PET study of depressed patients, using a different tracer, Drevets and colleagues found less dramatic reductions of the receptor in the anterior and posterior cingulate, but a 41 percent reduction in the raphe. These findings add to evidence for overlap between depression and anxiety disorders.

Although animal experiments have shown that cortisol secretion triggered by repeated stress reduces expression of the gene that codes for the 5-HT1A receptor, such stress hormone elevations are usually not found in panic disorder. Noting the recent discovery of a variant of the 5-HT1A receptor gene linked to major depression and suicide, the researchers suggest that reduced expression of the receptor "may be a source of vulnerability in humans, and that abnormal function of these receptors appears to specifically impact the cortical circuitry involved in the regulation of anxiety."


Other researchers who participated in the study are Drs. Earle Bain, Allison Nugent, Omer Bonne, David Luckenbaugh, Dennis Charney, NIMH; Richard Carson, William Eckelman, Peter Herscovitch, Warren G. Magnuson Clinical Center.

The National Institute of Mental Health (NIMH) and the Warren G. Magnuson Clinical Center are parts of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>