Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotion-regulating protein lacking in panic disorder

22.01.2004


Three brain areas of panic disorder patients are lacking in a key component of a chemical messenger system that regulates emotion, researchers at the NIH’s National Institute of Mental Health (NIMH) have discovered. Brain scans revealed that a type of serotonin receptor is reduced by nearly a third in three structures straddling the center of the brain. The finding is the first in living humans to show that the receptor, which is pivotal to the action of widely prescribed anti-anxiety medications, may be abnormal in the disorder, and may help to explain how genes might influence vulnerability. Drs. Alexander Neumeister and Wayne Drevets, NIMH Mood and Anxiety Disorders Program, and colleagues, report on their findings in the January 21, 2004 Journal of Neuroscience.



Each year, panic attacks strike about 2.4 million American adults "out of the blue," with feelings of intense fear and physical symptoms sometimes confused with a heart attack. Unchecked, the disorder often sets in motion a debilitating psychological sequel syndrome of agoraphobia, avoiding public places. Panic disorder runs in families and researchers have long suspected that it has a genetic component. The new finding, combined with evidence from recent animal studies, suggests that genes might increase risk for the disorder by coding for decreased expression of the receptors, say the researchers.

NIMH grantee Dr. Rene Hen, Columbia University, and colleagues, reported in 2002 that a strain of gene "knockout" mice, engineered to lack the receptor during a critical period in early development, exhibit anxiety traits in adulthood, such as a reluctance to begin eating in an unfamiliar environment. More recent experiments with the knockout mice show that a popular SSRI (serotonin selective reuptake inhibitor) drug produces its anti-anxiety effects by stimulating the formation of new neurons in the hippocampus via the serotonin 5-HT1A receptor.


In the current study, Neumeister and Drevets used PET scans (positron emission tomography) to visualize 5-HT1A receptors in brain areas of interest in 16 panic disorder patients – seven of whom also suffered from major depression – and 15 matched healthy controls. A new radioactive tracer (FCWAY), developed by NIH Clinical Center PET scan scientists, binds to the receptors, revealing their locations and a numerical count by brain region. Subjects also underwent structural MRI (magnetic resonance imaging) scans, which were overlaid with their PET scan data to precisely match it with brain structures.

In the panic disorder patients, including those who also had depression, receptors were reduced by an average of nearly a third in the anterior cingulate in the front middle part of the brain, the posterior cingulate, in the rear middle part of the brain, and in the raphe, in the midbrain (See images below.). Previous functional brain imaging studies have implicated both the anterior and posterior cingulate in the regulation of anxiety. Stimulation of 5-HT1A receptors in the raphe regulates serotonin synthesis and release. In an earlier PET study of depressed patients, using a different tracer, Drevets and colleagues found less dramatic reductions of the receptor in the anterior and posterior cingulate, but a 41 percent reduction in the raphe. These findings add to evidence for overlap between depression and anxiety disorders.

Although animal experiments have shown that cortisol secretion triggered by repeated stress reduces expression of the gene that codes for the 5-HT1A receptor, such stress hormone elevations are usually not found in panic disorder. Noting the recent discovery of a variant of the 5-HT1A receptor gene linked to major depression and suicide, the researchers suggest that reduced expression of the receptor "may be a source of vulnerability in humans, and that abnormal function of these receptors appears to specifically impact the cortical circuitry involved in the regulation of anxiety."


Other researchers who participated in the study are Drs. Earle Bain, Allison Nugent, Omer Bonne, David Luckenbaugh, Dennis Charney, NIMH; Richard Carson, William Eckelman, Peter Herscovitch, Warren G. Magnuson Clinical Center.

The National Institute of Mental Health (NIMH) and the Warren G. Magnuson Clinical Center are parts of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>