Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cancer gene causing tumours by a ‘double-whammy’ mechanism also reveals the key to a cure

21.01.2004


Scientists at the Babraham Institute have discovered that a tiny change in a protein involved in cell survival is responsible for abnormal cell activity in the early stages of cancer.



The protein, known as Bcl-xL, normally protects cells from dying; and when the DNA in cells becomes damaged, Bcl-xL is modified so that it no longer keeps the cells alive. Hence, the cells with damaged DNA usually die, so preventing them from becoming cancer cells.

However, in the presence of a particular cancer gene, the usual modification of Bcl-xL following DNA damage doesn’t occur, so cells with DNA damage are kept alive, resulting in cancer.


The discovery, described in an article in Cancer Cell published today (19 January), was made by Dr Rui Zhao, working in Dr Denis Alexander’s research group at the Babraham Institute, Cambridge. Sharp-eyed Dr Zhao noticed that the tiny change in Bcl-xL that normally occurs after exposing cells to radiation no longer happened when the particular cancer gene was present. “The cancer model that we’re working on is T cell lymphomas”, Dr Alexander explains, “but it’s quite likely that this mechanism could be relevant to other types of cancer as well - 24,500 people in Britain every year are diagnosed with a cancer of the blood”.

Intriguingly, the cancer gene being studied at the Babraham Institute (a hyperactive tyrosine kinase) acts by a ‘double-whammy’ mechanism. In the first instance, it inhibits the rapid repair of DNA damage that often occurs as cells divide. Therefore DNA damage quickly begins to accumulate in cells containing the cancer gene. Additionally, the cancer gene prevents the cells with damaged DNA from being eliminated, so leading to cancer. “It is quite likely”, says Dr. Alexander, “that if only one of these mechanisms were taking place, there would be no cancer. It’s when both occur simultaneously, the ‘double-whammy’, that the catastrophe happens”.

Understanding how the cancer gets going in the first place might eventually lead to novel cancer therapies. Dr. Alexander’s group has also shown that the critical modification of Bcl-xL, prevented by the cancer gene even before the cancer gets started, also remains blocked in tumours even when they’ve been exposed to reagents used in chemotherapy. “If we could find a way of averting this blockade”, Dr. Alexander comments, “then the power of Bcl-xL in keeping tumour cells alive would be destroyed, and the tumour would either spontaneously die or would at least become more sensitive to chemotherapy or radiotherapy”.

“We are delighted to see such breakthroughs in cancer research”, the Director Dr. Richard Dyer commented, “as this highlights the commitment of the Institute to investigate the basic biological mechanisms that underlie disease”.

Emma Southern | alfa
Further information:
http://www.babraham.ac.uk/news_events/index.htm

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>