Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A cancer gene causing tumours by a ‘double-whammy’ mechanism also reveals the key to a cure


Scientists at the Babraham Institute have discovered that a tiny change in a protein involved in cell survival is responsible for abnormal cell activity in the early stages of cancer.

The protein, known as Bcl-xL, normally protects cells from dying; and when the DNA in cells becomes damaged, Bcl-xL is modified so that it no longer keeps the cells alive. Hence, the cells with damaged DNA usually die, so preventing them from becoming cancer cells.

However, in the presence of a particular cancer gene, the usual modification of Bcl-xL following DNA damage doesn’t occur, so cells with DNA damage are kept alive, resulting in cancer.

The discovery, described in an article in Cancer Cell published today (19 January), was made by Dr Rui Zhao, working in Dr Denis Alexander’s research group at the Babraham Institute, Cambridge. Sharp-eyed Dr Zhao noticed that the tiny change in Bcl-xL that normally occurs after exposing cells to radiation no longer happened when the particular cancer gene was present. “The cancer model that we’re working on is T cell lymphomas”, Dr Alexander explains, “but it’s quite likely that this mechanism could be relevant to other types of cancer as well - 24,500 people in Britain every year are diagnosed with a cancer of the blood”.

Intriguingly, the cancer gene being studied at the Babraham Institute (a hyperactive tyrosine kinase) acts by a ‘double-whammy’ mechanism. In the first instance, it inhibits the rapid repair of DNA damage that often occurs as cells divide. Therefore DNA damage quickly begins to accumulate in cells containing the cancer gene. Additionally, the cancer gene prevents the cells with damaged DNA from being eliminated, so leading to cancer. “It is quite likely”, says Dr. Alexander, “that if only one of these mechanisms were taking place, there would be no cancer. It’s when both occur simultaneously, the ‘double-whammy’, that the catastrophe happens”.

Understanding how the cancer gets going in the first place might eventually lead to novel cancer therapies. Dr. Alexander’s group has also shown that the critical modification of Bcl-xL, prevented by the cancer gene even before the cancer gets started, also remains blocked in tumours even when they’ve been exposed to reagents used in chemotherapy. “If we could find a way of averting this blockade”, Dr. Alexander comments, “then the power of Bcl-xL in keeping tumour cells alive would be destroyed, and the tumour would either spontaneously die or would at least become more sensitive to chemotherapy or radiotherapy”.

“We are delighted to see such breakthroughs in cancer research”, the Director Dr. Richard Dyer commented, “as this highlights the commitment of the Institute to investigate the basic biological mechanisms that underlie disease”.

Emma Southern | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>