Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat cells fight disease, Purdue University researchers find

21.01.2004


Fat cells, commonly blamed for a number of diseases, also may aid in the body’s defense against illnesses such as diabetes and cancer, according to Purdue University researchers.


Purdue researchers have determined that fat cells in humans defend against biochemical processes involved in illnesses such as diabetes and cancer. The research team is headed by Michael Spurlock (left), professor of animal sciences, and Kolapo Ajuwon, a doctoral student. (Purdue Agricultural Communications photo/Tom Campbell)



Rather than contributing to disease, fat cells, or adipocytes (pronounced ah-dip-poe-sights), normally function as part of the immune system and help control lipid accumulation, so they actually may benefit human health, said Michael Spurlock, animal sciences professor.

"Adipocytes can be functional and beneficial without creating obesity," Spurlock said. "The key is that we want plenty of adipocytes to meet whatever immunological and endocrinological needs they fulfill, but we don’t want them to overaccumulate lipid."


In the January issue of The American Journal of Physiology, Spurlock and Kolapo Ajuwon, both of the Department of Animal Sciences and the Comparative Medicine Program, report that pig fat cells respond to infections by producing hormone-like proteins that regulate certain aspects of the body’s immune response.

"This is additional evidence that fat cells behave in many ways as immune cells," Spurlock said. "It also is the first evidence that adipocyte cells respond directly to bacterial toxins like classical immune cells."

To produce this infection-fighting response, Ajuwon, a doctoral student, performed experiments exposing fat cells to interferon-gamma, a small protein produced by infection-fighting T-cells. This caused the adipocytes to produce hormone-like proteins, called cytokines.

"Our research documents a pathway by which the adipocytes participate in the immune response," Spurlock said. "We have very clearly shown that interferon-gamma is increasing expression of cytokines in pig fat cells."

In another part of the study, the researchers found that a molecule, or ligand, binds to molecules on the outside of pig fat cells incubated in a laboratory dish. In this case the ligand is an inflammatory molecule called LPS. This binding with the receptor molecule on the pig fat cell, like a key in a lock, signals fat cells to produce more of another hormone-like cytokine.

The researchers believe that this is similar to what happens in humans since some pig breeds show marked similarity in cardiovascular disease, hyperglycemia and insulin resistance, Spurlock said. The study’s findings that the LPS ligand and interferon-gamma regulate production of cytokines that impact both energy metabolism and immune function are significant in studying human diseases, including cancer and diabetes.

The factor in the fat tissue that is linked to diseases is the amount of lipid, also known as fatty acid or tricylglycerol, in the adipocytes, he said. As adipocytes accumulate excess lipid, their normal function is distorted and they produce too much of some biochemicals and not enough of others. These abnormalities can culminate in disease.

"For a long time, we have looked for the link between the immune system, obesity and insulin resistance," Spurlock said. "The fact that fat cells actually promote or secrete factors, such as the cytokine interleukin-6, may be fundamentally linked to insulin resistance in diabetes. This makes adipocytes very important cells."

People with Type II diabetes produce insulin in their pancreas, but the insulin can’t control their glucose levels. Adipocytes normally produce factors that promote insulin regulation of glucose levels, but these factors don’t function properly when obesity is involved.

Spurlock and his research team now want to determine other factors, such as certain classes of fatty acids, that will activate or suppress the LPS receptor.

"We know there are non-infectious ligands that activate the receptor, so we want to know what they are," he said. "If we can discover these regulators, then we might be able to find a way to manipulate the receptors and immune pathways to regulate the body’s energy metabolism and apply that to diabetes and cancer."

The other researchers involved in the study are doctoral student Sheila Jacobi and research associate Joanne Kuske, both of the Purdue Department of Animal Sciences and the Comparative Medicine Program. The program is a collaboration of Purdue’s Department of Animal Sciences, School of Veterinary Medicine and Indiana University School of Medicine with initial funding from the Indiana 21st Century Research and Technology Fund.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Michael Spurlock, (765) 494-4820, spurloc0@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040120.Spurlock.fatcells.html

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>