Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance to combat antibiotic-resistant pneumonia and malaria

21.01.2004


Yeast used as surrogate model



New biochemical studies may hold clues to more powerful malaria and pneumonia treatments that could save more than 2 million lives worldwide. Using baker’s yeast as a surrogate disease model, researchers led by Dartmouth Medical School are exploring why enzymes in organisms that cause pneumonia and malaria are becoming increasingly resistant to antibiotics. This work could provide the answer to testing a new generation of drugs to combat these prevalent diseases.

Investigators used genetically modified yeast enzymes to pinpoint the mutations responsible for the antibiotic resistance of Pneumocystis jirovecii, which causes a type of pneumonia that is the most serious and prevalent AIDS-associated opportunistic infection and a threat to other immunocompromised patients, such as those undergoing therapy for cancer and organ transplantation. Pneumonia was responsible for more than 61,000 deaths in the US in 2001, according to the National Center for Health Statistics.


Appearing in the January 23 Journal of Biological Chemistry, the study examines the mutations responsible for disease’s tolerance toward atovaquone (ATV), a drug prescribed since 1995 that inhibits a respiratory enzyme called the cytochrome bc1 complex, that is essential for the pathogen’s survival. The lead author, Dr. Jacques Kessl, a research associate in biochemistry at DMS, said the study addresses recent evidence that indicates that pathogens that cause malaria and pneumonia are increasing resistance to ATV by developing mutations that prevent the drug from acting on the bc1 complex.

"We were able to isolate the genetic mutations that enable the pathogens to resist the drug when it is introduced to our yeast samples," said Dr. Bernard Trumpower, professor of biochemistry at DMS and corresponding author of the study. "As the genetically modified yeast strains now display atovaquone resistance identical to that found in pneumocystis, these yeast can be used to design new drugs to make the appearance of resistance more unlikely."

The study builds on prior research in Trumpower’s lab that used yeast enzymes as accurate and easily modified models to explore the resistance to ATV. It is not possible to grow pneumocystis enzymes in the large quantities necessary to isolate and study the cytochrome bc1 complex. Yeast is an excellent resource that can be manufactured in large quantities and can be easily modified to take on the qualities of more dangerous pathogens.

The researchers were able to genetically transfer into the yeast cytochrome b mutations like those found in the atovaquone resistant pneumocystis and found that these mutations caused the yeast to acquire similar resistance to ATV. Additionally, the team used a computer program to construct molecular models of the enzymes. "We can now visualize the different mutations in three dimensions to predict how the enzyme will react to different changes, like the introduction of a new antibiotic," said co-author Benjamin Lange, a research assistant at DMS.

"We are infinitely further along than we were three years ago in terms of understanding the basis for resistance in these organisms," said Trumpower. The co-authors of the study are Dr. Steven Meshnick from the University of North Carolina and Dr. Brigitte Meunier from the Wolfson Institute for Biomedical Research in London. The study was funded in part by the NIH.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>