Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance to combat antibiotic-resistant pneumonia and malaria

21.01.2004


Yeast used as surrogate model



New biochemical studies may hold clues to more powerful malaria and pneumonia treatments that could save more than 2 million lives worldwide. Using baker’s yeast as a surrogate disease model, researchers led by Dartmouth Medical School are exploring why enzymes in organisms that cause pneumonia and malaria are becoming increasingly resistant to antibiotics. This work could provide the answer to testing a new generation of drugs to combat these prevalent diseases.

Investigators used genetically modified yeast enzymes to pinpoint the mutations responsible for the antibiotic resistance of Pneumocystis jirovecii, which causes a type of pneumonia that is the most serious and prevalent AIDS-associated opportunistic infection and a threat to other immunocompromised patients, such as those undergoing therapy for cancer and organ transplantation. Pneumonia was responsible for more than 61,000 deaths in the US in 2001, according to the National Center for Health Statistics.


Appearing in the January 23 Journal of Biological Chemistry, the study examines the mutations responsible for disease’s tolerance toward atovaquone (ATV), a drug prescribed since 1995 that inhibits a respiratory enzyme called the cytochrome bc1 complex, that is essential for the pathogen’s survival. The lead author, Dr. Jacques Kessl, a research associate in biochemistry at DMS, said the study addresses recent evidence that indicates that pathogens that cause malaria and pneumonia are increasing resistance to ATV by developing mutations that prevent the drug from acting on the bc1 complex.

"We were able to isolate the genetic mutations that enable the pathogens to resist the drug when it is introduced to our yeast samples," said Dr. Bernard Trumpower, professor of biochemistry at DMS and corresponding author of the study. "As the genetically modified yeast strains now display atovaquone resistance identical to that found in pneumocystis, these yeast can be used to design new drugs to make the appearance of resistance more unlikely."

The study builds on prior research in Trumpower’s lab that used yeast enzymes as accurate and easily modified models to explore the resistance to ATV. It is not possible to grow pneumocystis enzymes in the large quantities necessary to isolate and study the cytochrome bc1 complex. Yeast is an excellent resource that can be manufactured in large quantities and can be easily modified to take on the qualities of more dangerous pathogens.

The researchers were able to genetically transfer into the yeast cytochrome b mutations like those found in the atovaquone resistant pneumocystis and found that these mutations caused the yeast to acquire similar resistance to ATV. Additionally, the team used a computer program to construct molecular models of the enzymes. "We can now visualize the different mutations in three dimensions to predict how the enzyme will react to different changes, like the introduction of a new antibiotic," said co-author Benjamin Lange, a research assistant at DMS.

"We are infinitely further along than we were three years ago in terms of understanding the basis for resistance in these organisms," said Trumpower. The co-authors of the study are Dr. Steven Meshnick from the University of North Carolina and Dr. Brigitte Meunier from the Wolfson Institute for Biomedical Research in London. The study was funded in part by the NIH.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>