Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New advance to combat antibiotic-resistant pneumonia and malaria

21.01.2004


Yeast used as surrogate model



New biochemical studies may hold clues to more powerful malaria and pneumonia treatments that could save more than 2 million lives worldwide. Using baker’s yeast as a surrogate disease model, researchers led by Dartmouth Medical School are exploring why enzymes in organisms that cause pneumonia and malaria are becoming increasingly resistant to antibiotics. This work could provide the answer to testing a new generation of drugs to combat these prevalent diseases.

Investigators used genetically modified yeast enzymes to pinpoint the mutations responsible for the antibiotic resistance of Pneumocystis jirovecii, which causes a type of pneumonia that is the most serious and prevalent AIDS-associated opportunistic infection and a threat to other immunocompromised patients, such as those undergoing therapy for cancer and organ transplantation. Pneumonia was responsible for more than 61,000 deaths in the US in 2001, according to the National Center for Health Statistics.


Appearing in the January 23 Journal of Biological Chemistry, the study examines the mutations responsible for disease’s tolerance toward atovaquone (ATV), a drug prescribed since 1995 that inhibits a respiratory enzyme called the cytochrome bc1 complex, that is essential for the pathogen’s survival. The lead author, Dr. Jacques Kessl, a research associate in biochemistry at DMS, said the study addresses recent evidence that indicates that pathogens that cause malaria and pneumonia are increasing resistance to ATV by developing mutations that prevent the drug from acting on the bc1 complex.

"We were able to isolate the genetic mutations that enable the pathogens to resist the drug when it is introduced to our yeast samples," said Dr. Bernard Trumpower, professor of biochemistry at DMS and corresponding author of the study. "As the genetically modified yeast strains now display atovaquone resistance identical to that found in pneumocystis, these yeast can be used to design new drugs to make the appearance of resistance more unlikely."

The study builds on prior research in Trumpower’s lab that used yeast enzymes as accurate and easily modified models to explore the resistance to ATV. It is not possible to grow pneumocystis enzymes in the large quantities necessary to isolate and study the cytochrome bc1 complex. Yeast is an excellent resource that can be manufactured in large quantities and can be easily modified to take on the qualities of more dangerous pathogens.

The researchers were able to genetically transfer into the yeast cytochrome b mutations like those found in the atovaquone resistant pneumocystis and found that these mutations caused the yeast to acquire similar resistance to ATV. Additionally, the team used a computer program to construct molecular models of the enzymes. "We can now visualize the different mutations in three dimensions to predict how the enzyme will react to different changes, like the introduction of a new antibiotic," said co-author Benjamin Lange, a research assistant at DMS.

"We are infinitely further along than we were three years ago in terms of understanding the basis for resistance in these organisms," said Trumpower. The co-authors of the study are Dr. Steven Meshnick from the University of North Carolina and Dr. Brigitte Meunier from the Wolfson Institute for Biomedical Research in London. The study was funded in part by the NIH.

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>