Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create chip that detects viruses faster, better and cheaper than ever before

20.01.2004


A new silicon chip that harnesses emerging technology at the nano scale will allow the detection of viruses faster, and more accurately, than ever before. One of the applications of this new technique will help save thousands of lives in patients undergoing heart transplants; by enabling doctors to detect rapidly whether a donor heart is infected or not. The scientists announced their discovery today in the Institute of Physics journal Nanotechnology.



The device, called the “ViriChip” was developed by a team led by Dr Saju Nettikadan from BioForce Nanosciences, in collaboration with Des Moines University, both in the USA.

The ViriChip is a small silicon chip about a quarter of an inch across (6mm) which has tiny droplets of antibodies printed on the surface. A single ViriChip can be printed with hundreds of different antibodies. These antibodies act as landing pads for viruses, which attach themselves selectively to certain antibodies. Once the viruses have landed on a particular droplet, they can be detected using an atomic force microscope (AFM). The AFM is a small and simple machine that uses a tiny “finger” to feel bumps on the surface of the chip at the nanometer scale. The AFM method is fast, very sensitive (it can “see” individual viruses) and it does not destroy the viruses so they can be further analyzed e.g. by cell culture and other methods.


Nettikadan’s team showed that this technique worked by detecting six different strains of a virus called coxsackievirus B. Coxsackievirus B causes symptoms ranging from mild cold to death, and is one of the key factors causing the failure of heart transplants. The ability to detect coxsackievirus B could save thousands of lives by allowing a physician rapidly to determine if a donor heart is infected.

Dr Eric Henderson, founder and Chief Scientist at BioForce Nanosciences said: “This is the first time scientists have been able to routinely apply droplets of an antibody on the micron to nanometer scale to a surface of a material like a silicon chip. In principle you can fit thousands of different antibodies on one chip and use it to test for thousands of different viral infections simultaneously, using just one sample from a patient. This means patients won’t have to provide large blood samples, just a single drop will be sufficient. It also means the results will come back in record time and further studies can be carried out on the unperturbed sample using more conventional, if slower, methods. The technique is currently being used by researchers and we hope it will be available for doctors and hospital pathology labs in the next two years.”

David Reid | alfa
Further information:
http://www.iop.org/EJ/abstract/0957-4484/15/3/027

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>