Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To avoid detection, HIV disrupts immune cell migration

20.01.2004


The HIV protein Nef sparked intensive research after observations that patients with a rare strain of HIV lacking Nef took a very long time to develop AIDS symptoms. Nef has been linked to molecules involved in cell signaling pathways and may use them for its own ends. But how Nef does this has not been clear. Now Jacek Skowronski and his colleagues at Cold Spring Harbor Laboratory in New York have identified a mechanism involving Nef, by which HIV-infected T cells are kept from traveling to sites within lymphatic tissues where they can become activated.



Skowronski’s lab found that Nef associates with two proteins, DOCK2 and ELMO1. DOCK2 regulates enzymes (Rac1 and Rac2) that are required for normal lymphocyte migration and antigen-specific responses. ELMO1 has also been shown to help DOCK2 activate Rac. Because DOCK2 activates Rac as part of two different signaling pathways--one activated by the T cell receptor, which mediates T cell activation, and one by a chemokine receptor, which controls T cell migration--the researchers investigated whether Nef could affect these important pathways by modulating Rac activity. They found that Nef in fact activates Rac by binding to the DOCK2ELMO1 complex. And they went on to show that HIV uses these components of the chemokine receptor pathway to disrupt T cell migration. To generate an effective immune response, it is crucial that T cells travel to sites within lymphatic tissues where they interact with other lymphocytes. By inhibiting T cell migration, the researchers propose, Nef prevents these critical interactions, thereby providing a mechanism for stifling the immune response.

These results, the authors argue, provide the biochemical evidence that Nef targets a protein "switch" that can interfere with important aspects of T cell function. In this way, Nef subverts the immune response pathways controlled by receptors on the surface of T cells to effectively disarm the immune system and turn T cells into viral replication factories. Understanding how Nef interacts with these proteins to spread infection could lay the foundation for valuable new therapies aimed at inhibiting and arresting HIV infection by blocking Nef-mediated effects.



All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Jacek Skowronski
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY 11724
United States of America
ph: 516-367-8407
skowrons@cshl.org

Philip Bernstein | Public Library of Science
Further information:
http://www.publiclibraryofscience.org/
http://www.plosbiology.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>