Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To avoid detection, HIV disrupts immune cell migration

20.01.2004


The HIV protein Nef sparked intensive research after observations that patients with a rare strain of HIV lacking Nef took a very long time to develop AIDS symptoms. Nef has been linked to molecules involved in cell signaling pathways and may use them for its own ends. But how Nef does this has not been clear. Now Jacek Skowronski and his colleagues at Cold Spring Harbor Laboratory in New York have identified a mechanism involving Nef, by which HIV-infected T cells are kept from traveling to sites within lymphatic tissues where they can become activated.



Skowronski’s lab found that Nef associates with two proteins, DOCK2 and ELMO1. DOCK2 regulates enzymes (Rac1 and Rac2) that are required for normal lymphocyte migration and antigen-specific responses. ELMO1 has also been shown to help DOCK2 activate Rac. Because DOCK2 activates Rac as part of two different signaling pathways--one activated by the T cell receptor, which mediates T cell activation, and one by a chemokine receptor, which controls T cell migration--the researchers investigated whether Nef could affect these important pathways by modulating Rac activity. They found that Nef in fact activates Rac by binding to the DOCK2ELMO1 complex. And they went on to show that HIV uses these components of the chemokine receptor pathway to disrupt T cell migration. To generate an effective immune response, it is crucial that T cells travel to sites within lymphatic tissues where they interact with other lymphocytes. By inhibiting T cell migration, the researchers propose, Nef prevents these critical interactions, thereby providing a mechanism for stifling the immune response.

These results, the authors argue, provide the biochemical evidence that Nef targets a protein "switch" that can interfere with important aspects of T cell function. In this way, Nef subverts the immune response pathways controlled by receptors on the surface of T cells to effectively disarm the immune system and turn T cells into viral replication factories. Understanding how Nef interacts with these proteins to spread infection could lay the foundation for valuable new therapies aimed at inhibiting and arresting HIV infection by blocking Nef-mediated effects.



All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Jacek Skowronski
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY 11724
United States of America
ph: 516-367-8407
skowrons@cshl.org

Philip Bernstein | Public Library of Science
Further information:
http://www.publiclibraryofscience.org/
http://www.plosbiology.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>