Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug prevents diabetes recurrence after islet cell transplantation

20.01.2004


A new anti-inflammatory compound called Lisofylline prevents diabetes from coming back after insulin-manufacturing islet cells are transplanted into diabetic mice, according to a new study by researchers at the University of Virginia Health System. The study is published in the January 20 issue of the journal Transplantation.



Pancreatic islet cell transplantation has become a promising treatment for type 1 diabetes in humans in recent years. But without several powerful immunosuppressive drugs, the body’s immune system would destroy the engrafted islet cells in transplant patients leading to insulin deficiency, an excess of glucose in the blood and the return of diabetes.

Lisofylline, or LSF, has the potential to help prevent this cellular destruction by preserving insulin secretion by pancreatic beta cells in the presence of autoimmune attackers called inflammatory cytokines, according to U.Va. researchers.


"Our findings are very encouraging and we are excited that Lisofylline worked so well in this animal model," said Dr. Jerry Nadler, chief of the division of endocrinology and metabolism at U.Va. and director of the Diabetes and Hormone Center of Excellence. "We have discovered a potentially new way to protect islet cells in a clinical transplant setting. It’s possible this research could form a basis for additional studies to use LSF or related anti-inflammatory compounds in humans to limit the need for more toxic immunosuppressant drugs in islet cell transplant patients."

In the study, diabetic mice that can only mount an autoimmune attack were given islet transplants in the kidney and then daily injections of LSF for 3 weeks. A control group was treated with only saline. Results of blood glucose tests showed that the LSF-treated mice maintained healthy glucose levels, without immunosuppressants and insulin, for more than 65 days. Mice treated with saline maintained healthy glucose levels for just six days. After researchers removed the kidneys, tests showed that insulin-positive beta cells had been retained in the islet cell grafts of the LSF-treated mice.

"We have found that Lisofylline has a unique function in protecting insulin-producing beta cells," said Dr. Zandong Yang, study co-author and assistant professor of research in the division of endocrinology and metabolism at U.Va. "At the cellular level, LSF inhibits a pathway that delivers cytokine damage to beta cells. At the molecular level, we believe LSF enhances the life-span and energy production of beta cells by increasing metabolism in the cellular mitochondria, the engine of a cell."

Yang says U.Va. researchers are hoping to test LSF in human islet cell transplant patients as part of the solution that surrounds the isolated islets. "This would be a great help and protect these cells from dying," he said.


The study was funded in part by grants from the Juvenile Diabetes Research Foundation and the Islet Replacement Research Foundation in Gordonsville, Va.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>