Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists discover protein in brain affects learning and memory

19.01.2004


Rutgers researchers have discovered what could be the newest target for drugs in the treatment of memory and learning disabilities as well as diseases such as Alzheimer’s and fetal alcohol syndrome: a protein known as cypin.



Cypin is found throughout the body, but in the brain it regulates nerve cell or neuron branching. Branching or dendrite growth is an important process in normal brain function and is thought to increase when a person learns. A reduction in branching is associated with certain neurological diseases.

"The identification of cypin and understanding how it works in the brain is particularly exciting since it opens up new avenues for the treatment of serious neurological disorders," said principal investigator Bonnie Firestein, assistant professor of cell biology and neuroscience at Rutgers, The State University of New Jersey. "This paves the way to designing new drugs that could target this protein molecule."


Proteins or the genes that code for them have become the targets of choice for developing precisely focused, effective new drug therapies – one of the outcomes of the many revelations provided by the Human Genome Project.

Firestein first identified and isolated cypin in 1999 during her postdoctoral research. She is currently focusing on how it works in the hippocampus, a structure in the brain associated with the regulation of emotions and memory.

"We knew that cypin existed elsewhere in the body where it performs other functions, but no one knew why it was present in the brain," Firestein. Her new research determined that cypin in the brain works as an enzyme involved in shaping neurons.

"One end of a neuron looks like a tree and, in the hippocampus, cypin controls the growth of its branches," she explained. "An increase in the number of branches provides additional sites where a neuron can receive information that it can pass along, enhancing communication."

Maxine Chen, a graduate student in Firestein’s laboratory, helped substantiate the connection between cypin and dendrite growth. When she looked closely at neurons in the lab, she found cypin only in certain neurons – "neurons that tended to be more fuzzy," as she described those with increased dendrites. Stimulating neurons in a dish also produced an increase in the protein overall. This has been shown to increase dendrite growth.

Fellow graduate student Barbara Akum further verified the connection between the protein and branching. She used a new molecular technique developed by Samuel Gunderson, a Rutgers assistant professor of molecular biology and biochemistry. With this new tool, Akum reduced the expression of cypin and observed a consequent decrease in branching.

"We also found something else that is really exciting," said Firestein, referring to the molecular mechanics by which cypin affects dendrite growth. Cypin appears to act as a glue that cements other molecules together into long chain structures that extend through the branches of a dendrite as a skeleton.

"Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton," explained Firestein. "If you just take our purified protein and mix it with tubulin in a test tube, the cypin on its own will actually cause these skeletal structures to grow."

A paper presenting this research will appear in Nature Neuroscience online beginning (Sunday) Jan. 19.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>