Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers scientists discover protein in brain affects learning and memory


Rutgers researchers have discovered what could be the newest target for drugs in the treatment of memory and learning disabilities as well as diseases such as Alzheimer’s and fetal alcohol syndrome: a protein known as cypin.

Cypin is found throughout the body, but in the brain it regulates nerve cell or neuron branching. Branching or dendrite growth is an important process in normal brain function and is thought to increase when a person learns. A reduction in branching is associated with certain neurological diseases.

"The identification of cypin and understanding how it works in the brain is particularly exciting since it opens up new avenues for the treatment of serious neurological disorders," said principal investigator Bonnie Firestein, assistant professor of cell biology and neuroscience at Rutgers, The State University of New Jersey. "This paves the way to designing new drugs that could target this protein molecule."

Proteins or the genes that code for them have become the targets of choice for developing precisely focused, effective new drug therapies – one of the outcomes of the many revelations provided by the Human Genome Project.

Firestein first identified and isolated cypin in 1999 during her postdoctoral research. She is currently focusing on how it works in the hippocampus, a structure in the brain associated with the regulation of emotions and memory.

"We knew that cypin existed elsewhere in the body where it performs other functions, but no one knew why it was present in the brain," Firestein. Her new research determined that cypin in the brain works as an enzyme involved in shaping neurons.

"One end of a neuron looks like a tree and, in the hippocampus, cypin controls the growth of its branches," she explained. "An increase in the number of branches provides additional sites where a neuron can receive information that it can pass along, enhancing communication."

Maxine Chen, a graduate student in Firestein’s laboratory, helped substantiate the connection between cypin and dendrite growth. When she looked closely at neurons in the lab, she found cypin only in certain neurons – "neurons that tended to be more fuzzy," as she described those with increased dendrites. Stimulating neurons in a dish also produced an increase in the protein overall. This has been shown to increase dendrite growth.

Fellow graduate student Barbara Akum further verified the connection between the protein and branching. She used a new molecular technique developed by Samuel Gunderson, a Rutgers assistant professor of molecular biology and biochemistry. With this new tool, Akum reduced the expression of cypin and observed a consequent decrease in branching.

"We also found something else that is really exciting," said Firestein, referring to the molecular mechanics by which cypin affects dendrite growth. Cypin appears to act as a glue that cements other molecules together into long chain structures that extend through the branches of a dendrite as a skeleton.

"Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton," explained Firestein. "If you just take our purified protein and mix it with tubulin in a test tube, the cypin on its own will actually cause these skeletal structures to grow."

A paper presenting this research will appear in Nature Neuroscience online beginning (Sunday) Jan. 19.

Joseph Blumberg | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>