Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why is this year’s flu so severe?

15.01.2004


Why is this year’s flu packing such a wallop? And why is it taking such a harsh toll on young children?

One reason is that the flu virus has changed, or mutated, slightly in the nine months since flu makers designed this year’s vaccine, and those changes may be rendering the vaccine less effective, according to flu expert John Treanor, M.D., director of the Vaccine Treatment and Evaluation Unit at the University of Rochester. Treanor provides an update on this year’s flu – and explains the reasons for its unusual severity – in an article in the January 15, 2004 issue of the New England Journal of Medicine.

While this year’s flu vaccine may be less effective than expected, an additional problem is making this flu season worse for young children. The flu virus most prevalent this year is from a family of viruses that has been scarce in the United States over the last three years. That means nearly all children ages three and under have never encountered the virus – or one similar to it – and haven’t produced antibodies that can fight it.



“The immune systems of young kids are being caught off guard this year,” says Treanor. “Young children who get influenza are at higher risk for becoming seriously ill and developing other complications. That’s why we’re hearing more reports of very sick infants and toddlers, and why we have been urging parents to have their kids immunized.” Treanor notes that the Centers for Disease Control and Prevention recently began to recommend influenza vaccination for all children six months to 23 months of age.

Flu vaccines typically are designed to protect against several strains of virus from different families of influenza. But over time viruses change, or mutate. Scientists studying this year’s flu virus have discovered two particular changes that are troublesome because they occurred in proteins on the outer surface of the virus that this year’s vaccine was designed to target. The small mutations changed the features of those proteins, making it difficult for antibodies to grab hold and mount an attack. The phenomenon is known as “antigenic drift,” and it enables a virus to spread even among people who are immunized or who had developed antibodies after a previous encounter with the flu. The most recent significant case of antigenic drift occurred in 1997, resulting in a flu season that, like the current one, began early and proved severe.

Treanor says that despite the changes discovered in the current strain of flu, this year’s flu vaccine is still likely to offer some protection, although it is not possible to predict how much. He notes that vaccines that use a weakened form of live influenza, such as the new nasally administered vaccine, may induce a broader immune response that offers better protection against such changes in the virus.

The Vaccine Treatment and Evaluation Unit at the University of Rochester is part of a network of seven centers established by the federal government to respond to national needs in the area of infectious diseases. This entails testing new vaccines or treatments for diseases or illnesses like flu, smallpox, whooping cough, pneumonia, malaria, and tuberculosis.


For more media inquiries, contact:
Chris DiFrancesco
(585) 273-4790

Christopher DiFrancesco | UMRC
Further information:
http://www.urmc.rochester.edu/pr/news/story.cfm?id=454

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>