Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PhD student discovers key genetic SARS link

14.01.2004


Month-long project leads to four-month investigation and revolutionary discovery



A U of T student had no idea his class project would end up unravelling the history of SARS. But when he was assigned an open-ended study, John Stavrinides jumped at the chance to tackle public enemy number one.

“I chose the SARS genome because it was obviously very important from a medical perspective,” said Stavrinides, a PhD candidate in comparative genomics.


Under the supervision of Professor David Guttman of botany, Stavrinides turned a month-long project into four months. It would involve 10-hour days in front of the computer, using computational tools to trace the coronavirus’ checkered past.

The detective work paid off. As Stavrinides and Guttman unravelled the history of the genome, they discovered that SARS was formed by a combination of mammalian and avian viruses. This recombination event created an entirely new coronavirus, unrecognizable to human immune systems.

Similar genetic exchange events are believed responsible for some of the most devastating viral epidemics and pandemics such as the 1918 Spanish flu pandemic that killed over 20 million people worldwide. Guttman said this type of genetic change can have far more dramatic consequences than simple genetic mutations, in
which only small features in genes are changed at any one time.

“These recombination events have the potential to create an entirely new structure essentially instantaneously,” he said. “Since our immune systems have never seen this new viral form, it is more difficult for them to respond to it in a timely and effective manner.”

Stavrinides and Guttman’s findings were published in the January issue of the Journal of Virology. Although an effective vaccine for SARS is years away, the study offers another piece to the puzzle.

“We hope that this work will contribute to the design of specific and effective vaccines,” Guttman said, “but perhaps it will be most useful in the development of tests for the diagnosis of new SARS outbreaks. We will be in a much better position to recognize new and potentially deadly viral outbreaks if we can identify the specific evolutionary changes that made SARS so deadly.”

The project garnered Stavrinides an A and received extensive international coverage in media outlets as far-reaching as Al-Jazeera and BBC News, but he’s not resting on his laurels. While his PhD work centres on bacteria instead of viruses, he said what he learned working with SARS was invaluable.

“In our field, you can apply all the tools and concepts to virtually any system,” said Stavrinides, who is studying plant pathogens. “That’s the power of evolutionary study.”


Karen Kelly is an assistant news services officer with the department of public affairs.
U of T Public Affairs, ph: (416) 978-0260; email: k.kelly@utoronto.ca

Karen Kelly | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040112a.asp

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>