Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PhD student discovers key genetic SARS link


Month-long project leads to four-month investigation and revolutionary discovery

A U of T student had no idea his class project would end up unravelling the history of SARS. But when he was assigned an open-ended study, John Stavrinides jumped at the chance to tackle public enemy number one.

“I chose the SARS genome because it was obviously very important from a medical perspective,” said Stavrinides, a PhD candidate in comparative genomics.

Under the supervision of Professor David Guttman of botany, Stavrinides turned a month-long project into four months. It would involve 10-hour days in front of the computer, using computational tools to trace the coronavirus’ checkered past.

The detective work paid off. As Stavrinides and Guttman unravelled the history of the genome, they discovered that SARS was formed by a combination of mammalian and avian viruses. This recombination event created an entirely new coronavirus, unrecognizable to human immune systems.

Similar genetic exchange events are believed responsible for some of the most devastating viral epidemics and pandemics such as the 1918 Spanish flu pandemic that killed over 20 million people worldwide. Guttman said this type of genetic change can have far more dramatic consequences than simple genetic mutations, in
which only small features in genes are changed at any one time.

“These recombination events have the potential to create an entirely new structure essentially instantaneously,” he said. “Since our immune systems have never seen this new viral form, it is more difficult for them to respond to it in a timely and effective manner.”

Stavrinides and Guttman’s findings were published in the January issue of the Journal of Virology. Although an effective vaccine for SARS is years away, the study offers another piece to the puzzle.

“We hope that this work will contribute to the design of specific and effective vaccines,” Guttman said, “but perhaps it will be most useful in the development of tests for the diagnosis of new SARS outbreaks. We will be in a much better position to recognize new and potentially deadly viral outbreaks if we can identify the specific evolutionary changes that made SARS so deadly.”

The project garnered Stavrinides an A and received extensive international coverage in media outlets as far-reaching as Al-Jazeera and BBC News, but he’s not resting on his laurels. While his PhD work centres on bacteria instead of viruses, he said what he learned working with SARS was invaluable.

“In our field, you can apply all the tools and concepts to virtually any system,” said Stavrinides, who is studying plant pathogens. “That’s the power of evolutionary study.”

Karen Kelly is an assistant news services officer with the department of public affairs.
U of T Public Affairs, ph: (416) 978-0260; email:

Karen Kelly | University of Toronto
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

A new look at thyroid diseases

28.10.2016 | Life Sciences

Sweetening neurotransmitter receptors and other neuronal proteins

28.10.2016 | Life Sciences

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

More VideoLinks >>>