Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop model to help control West Nile outbreak

14.01.2004


A University of Alberta researcher has developed the first model to predict risk of West Nile virus in North America--a tool that could help prevent the infectious disease from becoming an outbreak.



Dr. Marjorie Wonham and her research team from the Centre for Mathematical Biology at the University of Alberta, created a simple mathematical model using the dead bird counts collected in New York in 2000. Her research is published in the current issue of the Royal Society of London’s journal Proceedings B. Tomas de-Camino Beck and Mark Lewis are co-authors on the paper.

West Nile virus is an emerging infectious disease in North America that spreads primarily through contact between birds and mosquitoes. It can be lethal to birds, horses and humans. One of the key findings from Wonham’s work is that chance of a virus outbreak is decreased by removing mosquitoes but is actually increased by removing birds. The model provides a new analytical method for determining necessary mosquito control levels.


"This virus is endemic and we’re probably never going to get rid of it completely unless we say that we’re going to kill all the mosquitoes in the world--that’s not going to happen," said Wonham. "What this work does is tell you just what percentage of mosquitoes is necessary to kill to keep the virus below an outbreak. This is a first step towards effective management."

The research group set up parameter values from published scientific papers on mosquito biology, crow biology and West Nile biology. In order for a specific region to use this model, officials could tailor such parameters as mosquito life span, biting rate and crow life span to the data in their area. For example, since summer in Edmonton is short and dry, the mosquito lifecycle might be quite different than in the longer, more humid summer of New York.

Currently mosquitoes are killed through the application of chemical larvicides to the water, filling in the wetlands to remove the habitat and as a last resort, spraying chemicals to kill the adult species.

"Since applying chemicals and filling in wetlands costs money and causes environmental damage, one would ideally use the minimum amount of control that would still be effective in preventing outbreak," said Wonham. "Our model lets you calculate the threshold mosquito population for West Nile outbreak--you just have to keep them below the threshold level. This means, we would hope, minimal economic cost and environmental damage while still preventing outbreak."

Mathematical models have been used to manage diseases such as malaria but this is the first one to deal with West Nile.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>