Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery changes ideas about damage from strokes

13.01.2004


In experiments in the laboratory and with mice, the Johns Hopkins researchers found that the chemical prostaglandin-E2 protects brain cells from damage. The finding was completely unexpected, the researchers say, because prostaglandin-E2 causes damage in other tissues and is made by an enzyme, COX-2, known to wreak havoc in the brain after injury. The findings appear in the Jan. 7 issue of the Journal of Neuroscience.



"It’s kind of paradoxical, that the product of an enzyme that causes damage is itself beneficial," says Katrin Andreasson, M.D., an assistant professor of neurology and of neuroscience. "It’s possible that future treatments for stroke might use drugs to block COX-2 and enhance the effects of prostaglandin-E2, providing sort of a double whammy of protection.

"Prostaglandins have not previously been implicated in reducing damage from stroke, so our finding provides a completely new strategy for tackling and understanding the condition," she adds.


In experiments with individual brain cells and with brain slices from mice, the researchers discovered that prostaglandin-E2 (PGE2), one of many related molecules created by COX-2, protects brain cells traumatized by over-stimulation or by insufficient oxygen. Furthermore, in genetically engineered mice lacking one of the receptors, or docking points, for this prostaglandin, stroke damage was much greater than in normal mice, the researchers report.

"Together, these results provide very strong evidence that PGE-2 is indeed protective in the brain even though it may not be elsewhere in the body," says Andreasson, who obtained the genetically engineered mice from Richard Breyer at Vanderbilt University School of Medicine.

After their surprising discovery, the research team searched for why PGE2 is a "good guy" in the brain. Their experiments showed that stimulation of PGE2’s receptor increases production of a molecule called cyclic-AMP, which is known to help the brain. Other effects of PGE2, such as anti-inflammatory effects, may also contribute to its protective abilities in the brain, says Andreasson.

"We think that COX-2 products that increase cyclic-AMP may prove to be protective, like PGE2, while those that lower cyclic-AMP may contribute to COX-2’s known negative effects on brain damage from stroke," she says. "We’re still working on it."

About 4 million Americans are currently living with the effects of stroke, in which blood flow and oxygen delivery to the brain are interrupted by blockage or breakage of a blood vessel. At first, brain cells are shocked, not killed, but their chances of recovery decrease rapidly as time passes.

If given within an hour of the stroke, a drug called t-PA can prevent extensive damage by dissolving the blood clot that caused the stroke. However, finding a way to intervene later on -- for patients whose symptoms aren’t immediately recognized or who are more than an hour from a hospital -- could dramatically improve recovery and reduce the financial burden of strokes, which the National Stroke Association estimates is roughly $43 billion per year in the United States.

"We still need to determine whether stimulating the PGE2 receptor hours after a stroke can protect mice from damage," says Andreasson, who is conducting some of those studies now. "If so, pursuing this prostaglandin as a potential clinical target will be of great importance."

COX-2 has a significant role in brain damage after stroke in mice, and Andreasson has been searching for how exactly COX-2 causes damage. Scientists know that COX-2 is involved in creating inflammation, or swelling (drugs like Celebrex and Vioxx inhibit COX-2 and are widely prescribed for arthritis and other inflammatory conditions), but its activity leads to the production of a number of different molecules which could be more directly responsible for its effects. Andreasson and her colleagues are continuing to evaluate the effects of other products of COX-2.


The studies were funded by the American Federation for Aging Research, the American Heart Association, and the National Institute on Neurological Diseases and Stroke. Authors on the report are Andreasson, Louise McCullough, Liejun Wu, Norman Haughey, Xibin Liang, Tracey Hand and Qian Wang of The Johns Hopkins University School of Medicine; and Breyer of Vanderbilt.

Joanna Downer | EurekAlert!
Further information:
http://www.jneurosci.org/
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>