Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery changes ideas about damage from strokes

13.01.2004


In experiments in the laboratory and with mice, the Johns Hopkins researchers found that the chemical prostaglandin-E2 protects brain cells from damage. The finding was completely unexpected, the researchers say, because prostaglandin-E2 causes damage in other tissues and is made by an enzyme, COX-2, known to wreak havoc in the brain after injury. The findings appear in the Jan. 7 issue of the Journal of Neuroscience.



"It’s kind of paradoxical, that the product of an enzyme that causes damage is itself beneficial," says Katrin Andreasson, M.D., an assistant professor of neurology and of neuroscience. "It’s possible that future treatments for stroke might use drugs to block COX-2 and enhance the effects of prostaglandin-E2, providing sort of a double whammy of protection.

"Prostaglandins have not previously been implicated in reducing damage from stroke, so our finding provides a completely new strategy for tackling and understanding the condition," she adds.


In experiments with individual brain cells and with brain slices from mice, the researchers discovered that prostaglandin-E2 (PGE2), one of many related molecules created by COX-2, protects brain cells traumatized by over-stimulation or by insufficient oxygen. Furthermore, in genetically engineered mice lacking one of the receptors, or docking points, for this prostaglandin, stroke damage was much greater than in normal mice, the researchers report.

"Together, these results provide very strong evidence that PGE-2 is indeed protective in the brain even though it may not be elsewhere in the body," says Andreasson, who obtained the genetically engineered mice from Richard Breyer at Vanderbilt University School of Medicine.

After their surprising discovery, the research team searched for why PGE2 is a "good guy" in the brain. Their experiments showed that stimulation of PGE2’s receptor increases production of a molecule called cyclic-AMP, which is known to help the brain. Other effects of PGE2, such as anti-inflammatory effects, may also contribute to its protective abilities in the brain, says Andreasson.

"We think that COX-2 products that increase cyclic-AMP may prove to be protective, like PGE2, while those that lower cyclic-AMP may contribute to COX-2’s known negative effects on brain damage from stroke," she says. "We’re still working on it."

About 4 million Americans are currently living with the effects of stroke, in which blood flow and oxygen delivery to the brain are interrupted by blockage or breakage of a blood vessel. At first, brain cells are shocked, not killed, but their chances of recovery decrease rapidly as time passes.

If given within an hour of the stroke, a drug called t-PA can prevent extensive damage by dissolving the blood clot that caused the stroke. However, finding a way to intervene later on -- for patients whose symptoms aren’t immediately recognized or who are more than an hour from a hospital -- could dramatically improve recovery and reduce the financial burden of strokes, which the National Stroke Association estimates is roughly $43 billion per year in the United States.

"We still need to determine whether stimulating the PGE2 receptor hours after a stroke can protect mice from damage," says Andreasson, who is conducting some of those studies now. "If so, pursuing this prostaglandin as a potential clinical target will be of great importance."

COX-2 has a significant role in brain damage after stroke in mice, and Andreasson has been searching for how exactly COX-2 causes damage. Scientists know that COX-2 is involved in creating inflammation, or swelling (drugs like Celebrex and Vioxx inhibit COX-2 and are widely prescribed for arthritis and other inflammatory conditions), but its activity leads to the production of a number of different molecules which could be more directly responsible for its effects. Andreasson and her colleagues are continuing to evaluate the effects of other products of COX-2.


The studies were funded by the American Federation for Aging Research, the American Heart Association, and the National Institute on Neurological Diseases and Stroke. Authors on the report are Andreasson, Louise McCullough, Liejun Wu, Norman Haughey, Xibin Liang, Tracey Hand and Qian Wang of The Johns Hopkins University School of Medicine; and Breyer of Vanderbilt.

Joanna Downer | EurekAlert!
Further information:
http://www.jneurosci.org/
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>