Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Doctors at Northwestern Memorial Are Studying Next Generation Surgery for Back Pain Sufferers


Surgeons at Northwestern Memorial Hospital (NMH) are enrolling people with degenerative disc disease in a research study to determine if new artificial discs will have the long-term durability to safely provide increased range of motion and less strain on the adjacent discs than spinal fusion.

Northwestern Memorial Hospital is one of approximately 30 sites around the country testing the Maverick artificial disc made from cobalt-chrome alloy. Currently, three artificial discs are being investigated in the United States. The newest, the Maverick artificial disc, is different in that it has two rather than three components, which are both made of metal rather than using any plastics or polymers. Some studies have shown that plastics and polymers can eventually wear down, and the resulting debris and the subsequent tissue reaction to such debris is the primary factor limiting the longevity of joint replacements.

"Artificial joints in knees and hips have been around for decades, but progress in material engineering and refinement of surgical techniques finally mean we can attempt disc replacement in as critical a location as near the spinal cord," says Srdjan Mirkovic, M.D., a spine surgeon at Northwestern Memorial Hospital, assistant professor at Northwestern University’s Feinberg School of Medicine, and principal investigator for the study at NMH.

At Northwestern Memorial, the study is being done collaboratively with surgeons in both orthopedics and neurosurgery.

The Maverick lumbar disc is made from a cobalt-chrome alloy, a metal frequently used for orthopedic implants. When assembled, it can move side to side or back to front. "The concept is borrowed from a concept used in replacing joints in other parts of the body," says John Liu, M.D., a neurosurgeon at Northwestern Memorial Hospital, assistant professor at the Feinberg School of Medicine and a co-investigator for the study.

"The Maverick disc has no plastic parts and uses a simple design with only two moving parts. We expect this will decrease degradation of the disc and reduce problems with the mechanics of the disc."

Fusion, the current standard of care, is performed more than 200,000 times in the United States each year. "The reason we’re looking for alternatives to fusion is that, while fusing two or more vertebrae in the spine together can eliminate pain, it does have drawbacks," explains Dr. Mirkovic. "The bone does not always heal or fuse correctly, and the recovery and rehabilitation periods are prolonged. The theory behind replacing the disc rather than using spinal fusion is that we may be able to preserve range of motion and decrease wear and tear at adjacent levels by distributing stress through the lower back."

As with fusion, the diseased disc is removed. Then, rather than fusing the surrounding vertebrae together, the Maverick artificial disc is inserted in its place. A calcium-rich substance anchors it in place. "The recovery may be quicker because we don’t have to immobilize the lower back and wait for the bones to fully fuse as we do with fusion," explains co-investigator Matthew Hepler, M.D., an orthopedic surgeon at Northwestern Memorial and assistant professor at the Feinberg School of Medicine.

Discs are gel-like cushions between vertebrae that absorb shock and act like ball bearings when people bend and twist. Degenerative disc disease is part of the natural process of growing older. As people age, their intervertebral discs lose their flexibility, elasticity and shock absorbing characteristics. It is a common problem for athletes, but can affect anyone.

The Maverick artificial disc is an investigational device and is limited by federal law to investigational use. The research study will compare the outcomes of participants who receive an artificial disc with those of participants who have lumbar fusion. About two-thirds of study participants will receive the artificial disc and the rest will receive spinal fusion. Northwestern Memorial is enrolling participants who have failed conservative treatments such as medications and local injections for at least six months and who have pain originating from the disc itself. To learn more, please visit or contact Northwestern Memorial’s physician referral department at 312-926-8400 or 1-877-926-4NMH (4664).

About Northwestern Memorial Hospital

Northwestern Memorial Hospital (NMH) is one of the country’s premier academic medical centers and is the primary teaching hospital of Northwestern University’s Feinberg School of Medicine. Northwestern Memorial and its Prentice Women’s Hospital have 720 beds and more than 1,200 affiliated physicians and 5,000 employees. Providing care in a state-of-the-art facility, the hospital is recognized for its outstanding clinical and surgical advancements in such areas as cardiothoracic and vascular care, gastroenterology, neurology and neurosurgery, oncology, organ and bone marrow transplantation, and women’s health.

Northwestern Memorial was ranked as the nation’s 5 th best hospital by the 2002 Consumer Checkbook survey of the nation’s physicians and is listed in the majority of specialties in this year’s US News & World Report’s issue of “America’s Best Hospitals.” NMH is also cited as one of the “100 Best Companies for Working Mothers” by Working Mother magazine and has been chosen by Chicagoans year after year as their “most preferred hospital” in National Research Corporation’s annual survey.

Amanda Widtfeldt | NMH
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>