Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock key secrets showing how tumors hide from immune system

12.01.2004


In one of the biggest advances to come from the H. Lee Moffitt Cancer Center & Research Institute in its 16-year history, researchers have unlocked at least part of the mystery of how tumors flourish undetected by keeping their presence a secret from sentries of the body’s immune system.



"Flying beneath the radar" is how Nature Reviews Cancer (http://www.nature.com/cgi-taf/DynaPage.taf?file=/nrc/journal/v4/n1/full/nrc1261_fs.html) labels the mechanism of tumors evading capture, a process described by Hua Yu, Ph.D., and her colleagues at Moffitt and the University of South Florida College of Medicine. Their findings are published in the current issue of the journal Nature Medicine.

"Cancer is allowed to wreak havoc on the body’s immune system because it knows how to fool the body’s defensive arsenal," explains Jack Pledger, Ph.D., Associate Center Director for Basic Science and Professor of Biochemistry at USF. "The discoveries of Dr. Yu give us vital information about how tumors stay ’invisible.’ It opens the way for new treatments to help flush the cancer cells into the open, so the body’s armies against disease can destroy them."


Yu is an Associate Professor in the USF Department of Medical Microbiology and Immunology and the Immunology Program at Moffitt. Her coauthors on the study include Drew Pardoll, M.D., Ph.D., from the Johns Hopkins University School of Medicine, together with Richard Jove, Ph.D., and William Dalton, Ph.D., M.D., both from Moffitt and USF. Other authors include Tianhong Wang, Ph.D.., Guilian Niu, Ph.D., Lyudmila Burdelya, Ph.D., and Marcin Kortylewski, Ph.D. The study is titled "Regulation of the innate and adaptive immune responses by Stat3 signaling in tumor cells."

The researchers documented that the tumor’s activation of Stat3 (from the STAT family of proteins that regulates genes) secretes factors that inhibit the body’s immune responses by keeping dendritic cells from maturing. The activation also blocks expression of inflammatory mediators required to trigger the immune system.

Other ongoing research at Moffitt related to Stat3 includes using microarray technology to study the characteristic gene expression profiles or "molecular signatures" of certain genes that are regulated by the STAT. Scientists suspect that many genes that are directly or indirectly regulated by Stat3 may contribute to cancer, and they are working to develop new drugs based on inhibiting Stat3 for more effective treatment of breast cancer, prostate cancer, sarcoma, melanoma and other tumors that harbor aberrantly activated Stat3.

Andrea Brunais | EurekAlert!
Further information:
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nrc/journal/v4/n1/full/nrc1261_fs.html
http://hsc.usf.edu/

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>