Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA lariat may tie up loose ends to decades-old mystery of retrovirus life cycle

09.01.2004


Studies on common baker’s yeast have led to the discovery of what may be a long-sought mechanism in the life cycle of retroviruses, including the human immunodeficiency virus (HIV). Knowing the details of this step in the infection process could help pinpoint targets for new classes of drugs to fight HIV.



In the Jan. 9 issue of the journal Science, Thomas Menees and Zhi Cheng of the University of Missouri-Kansas City describe the formation of a lariat structure with the genetic material of retrovirus-like elements in baker’s yeast and subsequent cutting of the lariat by a yeast enzyme. The findings reported in Science and in the December 2003 Journal of Virology are the payoff of a three-year research gamble by Menees and two postdoctoral researchers pursuing host-cell factors in retroviral infections.

In addition to filling a gap in biologists’ understanding of how retroviruses replicate, it may turn out that similar lariat structures occur elsewhere in healthy cells and play previously unrecognized roles in cellular processes such as gene activation.


"The work of Menees and his collaborators fills a real void in our understanding of how retroviruses propagate and how genetic information is faithfully copied," said Patrick Dennis, program director for microbial genetics at the National Science Foundation (NSF), which supported the research. "The RNA lariat provides a plausible mechanism for a key step that has remained a mystery since the process of reverse transcription was first presented almost 35 years ago."

The 1975 Nobel Prize in Physiology or Medicine was awarded to David Baltimore and Howard Temin, in part, for describing how retroviruses replicate. The genomes of most organisms are encoded in DNA, which is transcribed into single- stranded ribonucleic acid (RNA) and then translated into proteins. The genome of a retrovirus, on the other hand, starts as RNA, which must first be converted into double-stranded DNA. Early in this process, the partially built DNA has to shift from one end of the RNA strand to the other end. Subsequent research confirmed that this so-called "template shift" does in fact occur, but the precise mechanism has never been identified.

"The structure of the lariat was very provocative," Menees said. "It is perfectly positioned to support template shifting. In addition, the lariat fits with data that were already out there and helps explain some other anomalous data on retroviral DNA."

While circumstantial evidence suggests the RNA lariat is the missing link, Menees is careful to point out that further work is needed to show that retroviruses actually use the same host-cell enzyme and the lariat structure to replicate.

He surmises that the lariat structure had escaped detection for so long because of its transient nature. As the RNA is being transcribed into DNA, another part of the viral machinery "chews up" and destroys the RNA.

Yeast cells are common laboratory models because they are structurally similar to human cells, and the harmless retrovirus-like elements in yeast serve as models for HIV and other retroviruses because all encode their genetic information in RNA and use the same process to replicate themselves. The main difference is that retroviruses eventually leave to infect other cells, while the yeast’s retrovirus-like elements remain in their host cell.

Only a few retroviruses are known to infect humans, but they include HIV-1, HIV-2, and forms of the human T-cell lymphotrophic virus (HTLV). Other retroviruses are known to cause cancer in animals.

"The new results provide remarkable new insights into the process of reverse transcription of virus-like RNA into DNA," said Stephen Goff, Higgins Professor of Biochemistry and Molecular Biophysics and Microbiology at Columbia University, who saw Menees present the lariat findings at a scientific meeting in May 2003. "The possibility that there are new players in the process of transposition is very exciting. If it is confirmed that the same enzyme is required for HIV-1 replication, there is little doubt that a new aspect of virus replication will be targeted for drug intervention."


NSF Program Officer: Patrick Dennis, 703-292-9061, pdennis@nsf.gov

Principal Investigator: Thomas Menees, 816-235-1849, meneest@umkc.edu

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

David Hart | NSF
Further information:
http://www.nsf.gov/

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>