Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA lariat may tie up loose ends to decades-old mystery of retrovirus life cycle

09.01.2004


Studies on common baker’s yeast have led to the discovery of what may be a long-sought mechanism in the life cycle of retroviruses, including the human immunodeficiency virus (HIV). Knowing the details of this step in the infection process could help pinpoint targets for new classes of drugs to fight HIV.



In the Jan. 9 issue of the journal Science, Thomas Menees and Zhi Cheng of the University of Missouri-Kansas City describe the formation of a lariat structure with the genetic material of retrovirus-like elements in baker’s yeast and subsequent cutting of the lariat by a yeast enzyme. The findings reported in Science and in the December 2003 Journal of Virology are the payoff of a three-year research gamble by Menees and two postdoctoral researchers pursuing host-cell factors in retroviral infections.

In addition to filling a gap in biologists’ understanding of how retroviruses replicate, it may turn out that similar lariat structures occur elsewhere in healthy cells and play previously unrecognized roles in cellular processes such as gene activation.


"The work of Menees and his collaborators fills a real void in our understanding of how retroviruses propagate and how genetic information is faithfully copied," said Patrick Dennis, program director for microbial genetics at the National Science Foundation (NSF), which supported the research. "The RNA lariat provides a plausible mechanism for a key step that has remained a mystery since the process of reverse transcription was first presented almost 35 years ago."

The 1975 Nobel Prize in Physiology or Medicine was awarded to David Baltimore and Howard Temin, in part, for describing how retroviruses replicate. The genomes of most organisms are encoded in DNA, which is transcribed into single- stranded ribonucleic acid (RNA) and then translated into proteins. The genome of a retrovirus, on the other hand, starts as RNA, which must first be converted into double-stranded DNA. Early in this process, the partially built DNA has to shift from one end of the RNA strand to the other end. Subsequent research confirmed that this so-called "template shift" does in fact occur, but the precise mechanism has never been identified.

"The structure of the lariat was very provocative," Menees said. "It is perfectly positioned to support template shifting. In addition, the lariat fits with data that were already out there and helps explain some other anomalous data on retroviral DNA."

While circumstantial evidence suggests the RNA lariat is the missing link, Menees is careful to point out that further work is needed to show that retroviruses actually use the same host-cell enzyme and the lariat structure to replicate.

He surmises that the lariat structure had escaped detection for so long because of its transient nature. As the RNA is being transcribed into DNA, another part of the viral machinery "chews up" and destroys the RNA.

Yeast cells are common laboratory models because they are structurally similar to human cells, and the harmless retrovirus-like elements in yeast serve as models for HIV and other retroviruses because all encode their genetic information in RNA and use the same process to replicate themselves. The main difference is that retroviruses eventually leave to infect other cells, while the yeast’s retrovirus-like elements remain in their host cell.

Only a few retroviruses are known to infect humans, but they include HIV-1, HIV-2, and forms of the human T-cell lymphotrophic virus (HTLV). Other retroviruses are known to cause cancer in animals.

"The new results provide remarkable new insights into the process of reverse transcription of virus-like RNA into DNA," said Stephen Goff, Higgins Professor of Biochemistry and Molecular Biophysics and Microbiology at Columbia University, who saw Menees present the lariat findings at a scientific meeting in May 2003. "The possibility that there are new players in the process of transposition is very exciting. If it is confirmed that the same enzyme is required for HIV-1 replication, there is little doubt that a new aspect of virus replication will be targeted for drug intervention."


NSF Program Officer: Patrick Dennis, 703-292-9061, pdennis@nsf.gov

Principal Investigator: Thomas Menees, 816-235-1849, meneest@umkc.edu

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

David Hart | NSF
Further information:
http://www.nsf.gov/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>