Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asthma Could be Several Diseases Masquerading as One

09.01.2004


Age at Onset and Inflammatory Cells Define Patient Subsets, Guide Treatment



People who develop asthma as children may have a different disease than those who develop it as an adult. A study in the January issue of The Journal of Allergy and Clinical Immunology adds to the growing body of evidence that asthma is not a single disease, but a group of syndromes with different origins and biological characteristics. The research team, led by Sally Wenzel, M.D., a pulmonologist at National Jewish Medical and Research Center, also found that the absence or presence of inflammatory cells, called eosinophils, helped distinguish differences among asthma patients.

"We found that patients whose asthma began in childhood were more frequently allergic than those whose asthma began as adults, while adult-onset asthma was associated with more rapid loss of lung function," said Wenzel. "We were surprised to find that many patients showed no signs of inflammation, generally considered a hallmark of the asthma, yet they still had severe airflow limitation and many asthma symptoms."


The study represents the first time that a research team has combined information from a detailed questionnaire with extensive biological data to define subsets of asthma patients. This data should help physicians better diagnose and treat their asthma patients and make better predictions about the course of their disease. The data may also help guide the search for genetic causes of the disease.

The researchers studied 80 patients with severe asthma who had been referred to National Jewish Medical and Research Center because high doses of inhaled or oral steroids had failed to control their symptoms. Patients were divided into those whose asthma developed before 12 years of age and those whose asthma developed later. The early-onset group developed asthma at the mean age of 2.6 years, while the late-onset group developed asthma at the mean age of 27. They were evaluated for differences in allergic responses, symptoms, lung function and pathology.

More than 75% of patients who developed asthma before the age of 12 reported that they wheezed "most or all of the time" when exposed to dust or pollens, while less than 40% of patients whose asthma developed after 12 did so. Patients with early-onset asthma were also more likely to respond positively to allergens in a skin test and to have had eczema, an allergic skin disease.

Although early-onset patients had had the disease, on average, almost twice as long as the late-onset patients, lung function was slightly worse in the late-onset group. That suggests that patients with late-onset disease suffer a more rapid loss of lung function.

The pattern of inflammation also differed depending upon the age of onset. Late-onset patients were more likely than early-onset patients to have inflammatory cells known as eosinophils in their airways, in spite of treatment with powerful oral steroids. Early-onset patients also showed a pattern of inflammation more frequently associated with allergies than did late-onset patients.

"Asthma has traditionally been very broadly defined in terms of symptoms rather than underlying biological processes," said Wenzel. "Our research helped us divide these severe asthma patients into four subsets, based on age of onset and presence or absence of eosinophils. We believe these subsets represent different biological processes and mechanisms of steroid resistance."

The definition of these subsets could help guide diagnosis, treatment and future research. For example, since early-nset patients were more often allergic than late-onset patients, treatments would be more likely to include an anti-allergy component. Late-onset patients without eosinophils, may well have a completely different disease associated with infection or gastroesophageal reflux.

These subsets might also help guide a search for genes associated with asthma, which has, so far, proven difficult. Different phenotypes could be influenced by different genes, said Wenzel. If so, then searches focusing on specific patient subsets might uncover stronger genetic influences in asthma.

William Allstetter | NJMRC
Further information:
http://www.nationaljewish.org/news/phenotypes_wenzel.html

More articles from Health and Medicine:

nachricht Fast-tracking T cell therapies with immune-mimicking biomaterials
16.01.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>