Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in shape of single protein plays key role in the spread of cancer cells

07.01.2004


Milestone discovery of the 3-D structure and function of vinculin explains how this protein changes its shape to perform different functions in health and disease



The discovery of how a protein called vinculin undergoes exquisitely precise changes in its shape is helping to answer some major questions about the life of cells, the development of tissues and organs and the spread of cancer from one part of the body to another. These findings, to be published in the Jan. 8, 2004, issue of Nature, were made by scientists at St. Jude Children’s Research Hospital.

The newly recognized way that this protein can change its shape is important because slight changes in the shape of vinculin completely change its role in the cell, making the protein a versatile tool for completing different tasks. For example, by alternately changing its shape from active to inactive forms, vinculin can control the cell’s ability to remain stationary or move through its environment.


Vinculin enables cells to move within developing tissues and organs of the embryo and spark the healing of wounds. But vinculin can also regulate the ability of cancer cells to move away from tumors and spread cancer to other parts of the body, according to Tina Izard, Ph.D., assistant member in the Department of Hematology-Oncology. Izard led the research team and is the first and senior author of a report on this work.

The discovery of how vinculin changes its shape holds promise for developing new ways to prevent the spread of cancer cells. The milestone discoveries of changes in the shape and function of vinculin illustrate the versatility of some proteins and help explain how the enormous complexity of the human body can arise from a mere 30,000 to 40,000 genes, according to Philippe R.J. Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Genetics.

"It was already known that cells can read certain genes in different ways to make different proteins," Bois said. "But these new findings significantly enhance our appreciation of the scope of protein function in the cell."

The researchers used X-ray crystallography to generate information on the shape of vinculin in its inactive and active forms. Izard’s team shot X-rays at crystalline forms of human vinculin and collected the patterns formed when the X-rays diffracted off the different parts of the protein. The researchers created these patterns using the X-ray crystallography facility at the Argonne National Laboratory (Argonne, Ill.). Diffraction patterns form when X-rays are diffracted by a crystal. The vinculin diffraction patterns underwent computer processing using software developed at Global Phasing Limited, a company in Cambridge, England.

Vinculin’s ability to alter its shape to meet the demands of a task stems from the series of gracefully curling segments--each one of which is called a helix---that makes up much of the structure of this protein.

"Vinculin resembles a series of cylinders held together by threads," Izard said.

Vinculin changes its shape by moving the individual helical "cylinders" making up its head–much like the movement of the fingers on a hand--in a process called helical bundle conversion. This process, which the team discovered, occurs after one of two different proteins binds to the head.

The team demonstrated that when a protein called talin binds to vinculin’s head, the head undergoes helical bundle conversion and the helices assume new positions relative to each other, according to Izard. The new shape of the head is critical to vinculin’s ability to help the cell anchor itself to the environment outside its membrane--an area called the "extracellular matrix." This keeps the cell in one spot so it does not drift away.

However, when the protein called á-actinin (alpha-actinin) binds to vinculin’s head, the head acquires a different shape. In this shape, vinculin plays a critical role in stabilizing a chain of molecules called cadherin. This extends through the cell membrane and binds with cadherin chains from neighboring cells. The connection, similar to a chain-linked fence, permits cells to bind together into sheets, and thus form tissues and organs.

Together, talin and á-actinin help vinculin build tissues and organs out of individual cells by keeping cells in one spot.

"But when vinculin shifts from active to inactive form and back again, the cell can perform other tasks as well," Izard said. For example, such a shift lets many cells move from their original location to take up positions elsewhere in the developing body where new tissues and organs are destined to arise.

"In other words, vinculin is a critical protein that performs different roles in the body," Boise said. "It is a master conductor of much of the cell’s life, changing its shape to conduct the cell’s business according to the cell’s immediate needs."

Other authors of the study include Robert A. Borgon and Christina L. Rush (St. Jude and the University of Tennessee) and Gwyndaf Evans and Gerard Bricogne (Global Phasing Limited, Cambridge, England).



This work was supported in part by the Cancer Center Support (CORE) Grant and ALSAC.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>