Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in shape of single protein plays key role in the spread of cancer cells

07.01.2004


Milestone discovery of the 3-D structure and function of vinculin explains how this protein changes its shape to perform different functions in health and disease



The discovery of how a protein called vinculin undergoes exquisitely precise changes in its shape is helping to answer some major questions about the life of cells, the development of tissues and organs and the spread of cancer from one part of the body to another. These findings, to be published in the Jan. 8, 2004, issue of Nature, were made by scientists at St. Jude Children’s Research Hospital.

The newly recognized way that this protein can change its shape is important because slight changes in the shape of vinculin completely change its role in the cell, making the protein a versatile tool for completing different tasks. For example, by alternately changing its shape from active to inactive forms, vinculin can control the cell’s ability to remain stationary or move through its environment.


Vinculin enables cells to move within developing tissues and organs of the embryo and spark the healing of wounds. But vinculin can also regulate the ability of cancer cells to move away from tumors and spread cancer to other parts of the body, according to Tina Izard, Ph.D., assistant member in the Department of Hematology-Oncology. Izard led the research team and is the first and senior author of a report on this work.

The discovery of how vinculin changes its shape holds promise for developing new ways to prevent the spread of cancer cells. The milestone discoveries of changes in the shape and function of vinculin illustrate the versatility of some proteins and help explain how the enormous complexity of the human body can arise from a mere 30,000 to 40,000 genes, according to Philippe R.J. Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Genetics.

"It was already known that cells can read certain genes in different ways to make different proteins," Bois said. "But these new findings significantly enhance our appreciation of the scope of protein function in the cell."

The researchers used X-ray crystallography to generate information on the shape of vinculin in its inactive and active forms. Izard’s team shot X-rays at crystalline forms of human vinculin and collected the patterns formed when the X-rays diffracted off the different parts of the protein. The researchers created these patterns using the X-ray crystallography facility at the Argonne National Laboratory (Argonne, Ill.). Diffraction patterns form when X-rays are diffracted by a crystal. The vinculin diffraction patterns underwent computer processing using software developed at Global Phasing Limited, a company in Cambridge, England.

Vinculin’s ability to alter its shape to meet the demands of a task stems from the series of gracefully curling segments--each one of which is called a helix---that makes up much of the structure of this protein.

"Vinculin resembles a series of cylinders held together by threads," Izard said.

Vinculin changes its shape by moving the individual helical "cylinders" making up its head–much like the movement of the fingers on a hand--in a process called helical bundle conversion. This process, which the team discovered, occurs after one of two different proteins binds to the head.

The team demonstrated that when a protein called talin binds to vinculin’s head, the head undergoes helical bundle conversion and the helices assume new positions relative to each other, according to Izard. The new shape of the head is critical to vinculin’s ability to help the cell anchor itself to the environment outside its membrane--an area called the "extracellular matrix." This keeps the cell in one spot so it does not drift away.

However, when the protein called á-actinin (alpha-actinin) binds to vinculin’s head, the head acquires a different shape. In this shape, vinculin plays a critical role in stabilizing a chain of molecules called cadherin. This extends through the cell membrane and binds with cadherin chains from neighboring cells. The connection, similar to a chain-linked fence, permits cells to bind together into sheets, and thus form tissues and organs.

Together, talin and á-actinin help vinculin build tissues and organs out of individual cells by keeping cells in one spot.

"But when vinculin shifts from active to inactive form and back again, the cell can perform other tasks as well," Izard said. For example, such a shift lets many cells move from their original location to take up positions elsewhere in the developing body where new tissues and organs are destined to arise.

"In other words, vinculin is a critical protein that performs different roles in the body," Boise said. "It is a master conductor of much of the cell’s life, changing its shape to conduct the cell’s business according to the cell’s immediate needs."

Other authors of the study include Robert A. Borgon and Christina L. Rush (St. Jude and the University of Tennessee) and Gwyndaf Evans and Gerard Bricogne (Global Phasing Limited, Cambridge, England).



This work was supported in part by the Cancer Center Support (CORE) Grant and ALSAC.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>