Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in shape of single protein plays key role in the spread of cancer cells

07.01.2004


Milestone discovery of the 3-D structure and function of vinculin explains how this protein changes its shape to perform different functions in health and disease



The discovery of how a protein called vinculin undergoes exquisitely precise changes in its shape is helping to answer some major questions about the life of cells, the development of tissues and organs and the spread of cancer from one part of the body to another. These findings, to be published in the Jan. 8, 2004, issue of Nature, were made by scientists at St. Jude Children’s Research Hospital.

The newly recognized way that this protein can change its shape is important because slight changes in the shape of vinculin completely change its role in the cell, making the protein a versatile tool for completing different tasks. For example, by alternately changing its shape from active to inactive forms, vinculin can control the cell’s ability to remain stationary or move through its environment.


Vinculin enables cells to move within developing tissues and organs of the embryo and spark the healing of wounds. But vinculin can also regulate the ability of cancer cells to move away from tumors and spread cancer to other parts of the body, according to Tina Izard, Ph.D., assistant member in the Department of Hematology-Oncology. Izard led the research team and is the first and senior author of a report on this work.

The discovery of how vinculin changes its shape holds promise for developing new ways to prevent the spread of cancer cells. The milestone discoveries of changes in the shape and function of vinculin illustrate the versatility of some proteins and help explain how the enormous complexity of the human body can arise from a mere 30,000 to 40,000 genes, according to Philippe R.J. Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Genetics.

"It was already known that cells can read certain genes in different ways to make different proteins," Bois said. "But these new findings significantly enhance our appreciation of the scope of protein function in the cell."

The researchers used X-ray crystallography to generate information on the shape of vinculin in its inactive and active forms. Izard’s team shot X-rays at crystalline forms of human vinculin and collected the patterns formed when the X-rays diffracted off the different parts of the protein. The researchers created these patterns using the X-ray crystallography facility at the Argonne National Laboratory (Argonne, Ill.). Diffraction patterns form when X-rays are diffracted by a crystal. The vinculin diffraction patterns underwent computer processing using software developed at Global Phasing Limited, a company in Cambridge, England.

Vinculin’s ability to alter its shape to meet the demands of a task stems from the series of gracefully curling segments--each one of which is called a helix---that makes up much of the structure of this protein.

"Vinculin resembles a series of cylinders held together by threads," Izard said.

Vinculin changes its shape by moving the individual helical "cylinders" making up its head–much like the movement of the fingers on a hand--in a process called helical bundle conversion. This process, which the team discovered, occurs after one of two different proteins binds to the head.

The team demonstrated that when a protein called talin binds to vinculin’s head, the head undergoes helical bundle conversion and the helices assume new positions relative to each other, according to Izard. The new shape of the head is critical to vinculin’s ability to help the cell anchor itself to the environment outside its membrane--an area called the "extracellular matrix." This keeps the cell in one spot so it does not drift away.

However, when the protein called á-actinin (alpha-actinin) binds to vinculin’s head, the head acquires a different shape. In this shape, vinculin plays a critical role in stabilizing a chain of molecules called cadherin. This extends through the cell membrane and binds with cadherin chains from neighboring cells. The connection, similar to a chain-linked fence, permits cells to bind together into sheets, and thus form tissues and organs.

Together, talin and á-actinin help vinculin build tissues and organs out of individual cells by keeping cells in one spot.

"But when vinculin shifts from active to inactive form and back again, the cell can perform other tasks as well," Izard said. For example, such a shift lets many cells move from their original location to take up positions elsewhere in the developing body where new tissues and organs are destined to arise.

"In other words, vinculin is a critical protein that performs different roles in the body," Boise said. "It is a master conductor of much of the cell’s life, changing its shape to conduct the cell’s business according to the cell’s immediate needs."

Other authors of the study include Robert A. Borgon and Christina L. Rush (St. Jude and the University of Tennessee) and Gwyndaf Evans and Gerard Bricogne (Global Phasing Limited, Cambridge, England).



This work was supported in part by the Cancer Center Support (CORE) Grant and ALSAC.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>