Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lighting the way to early cancer detection


Scientists at the University of Sussex are pioneering a non-invasive way to identify cancers. The team has vastly improved a system for detecting cancer in the early stages, without putting patients through painful exploratory procedures.

The detection works by beaming ultra violet light at a patient and analysing the information reflected. This information, known as luminescence, reveals a spectrum of colours that separates healthy and cancerous tissue. The results show whether the light has hit healthy or abnormal cells, long before any damage becomes visible to the eye.

Dr Natalia Beloff, a lecturer in software engineering, is carrying out computer simulations to improve the basic system ready for manufacture. Her research will radically improve the sensitivity of the receiver detecting luminescence.

Dr Beloff said: “The earlier cancer is detected, the better chance a patient has of recovery. We hope that within a few years clinics across the country may be able to use the photocathode device to help save lives. During the last three years there has been an explosion in the literature on successful early detection of skin, bronchial, oral and many other cancers types using luminescence. In the future it could work well for breast cancer, one of the main killers of women today. We cannot as yet see deep-set cancers, such as bone or stomach, but the technology is improving all the time.”

Dr Beloff’s findings will speed the development of the device by avoiding costly and time-consuming laboratory testing. She said: “In recent years, my colleagues at Sussex have improved photocathode detector performance by up to 20 times previous capabilities, significantly outperforming all other devices available in the world. This pioneering new work will allow us to see the practical application of our science for the benefit of all society.”

The latest research builds on breakthroughs by Sussex cathode theorist Dr. Stuart Harmer and experimental physicist Prof. Peter Townsend, inventor of a world leading way to improve the cathodes. The next stage of development links up with two UK industrial companies, Photek in Hastings and manufacturers of the final design Electron Tubes Ltd in Ruislip. The research is being funded by a £125,000 grant from the Engineering and Physical Sciences Research Council and £70,000 from Electron Tubes Ltd. The project is part of Framework V, a two million euro EU programme.

Alix Macfarlane | University of Sussex
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>